sampling_module.py 14.7 KB
Newer Older
Poorva Potdar's avatar
Poorva Potdar committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
# Copyright 2020 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Sampling module for top_k, top_p and greedy decoding."""

import abc
from typing import Any, Callable, Dict

import numpy as np
import tensorflow as tf

from official.nlp.modeling.ops import decoding_module


class SamplingModule(decoding_module.DecodingModule, metaclass=abc.ABCMeta):
  """Implementation for sampling stratgies (go/decoding-tf-nlp)."""

  def __init__(self,
               symbols_to_logits_fn,
               length_normalization_fn: Callable[[int, tf.DType], float],
               vocab_size: int,
               max_decode_length: int,
               eos_id: int,
               padded_decode: bool,
               top_k: tf.Tensor = None,
               sample_temperature: tf.Tensor = None,
               dtype: tf.DType = tf.float32):
    """Initialize sampling module."""
    self.symbols_to_logits_fn = symbols_to_logits_fn
    self.vocab_size = vocab_size
    self.length_normalization_fn = length_normalization_fn
    self.max_decode_length = max_decode_length
    self.eos_id = eos_id
    self.padded_decode = padded_decode
    self.dtype = tf.as_dtype(dtype)
    self.top_k = top_k
    self.sample_temperature = sample_temperature
    super(SamplingModule, self).__init__(
        length_normalization_fn=length_normalization_fn, dtype=dtype)

  def _grow_alive_seq(self,
                      state: Dict[str, Any],
                      batch_size: int) -> decoding_module.InternalState:
    """Grow alive sequences by one token.

    This function will implement the decoding strategies like top_p, top_k
    and greedy for the choosing the next logit.

    Args:
      state: A dictionary with the current loop state.
      batch_size: The given batch size

    Returns:
      Tuple of
      (Top sequences [batch, curr_index + 1] or [batch, max_decode_length + 1],
       Scores of returned sequences [batch, 1],
       New ids [batch, 1],
       New alive cache)
    """
    i = state[decoding_module.StateKeys.CUR_INDEX]
    alive_seq = state[decoding_module.StateKeys.ALIVE_SEQ]
    alive_log_probs = state[decoding_module.StateKeys.ALIVE_LOG_PROBS]
    alive_cache = state[decoding_module.StateKeys.ALIVE_CACHE]

    if self.padded_decode:
      ids = tf.slice(alive_seq, [0, i], [batch_size, 1])
    else:
      ids = alive_seq

    new_logits, new_cache = self.symbols_to_logits_fn(ids, i, alive_cache)
    candidate_log_probs = decoding_module.DecodingModule._log_prob_from_logits(
        new_logits)
    original_log_probs = candidate_log_probs + alive_log_probs
    probs = original_log_probs

    topk_log_probs, topk_ids = None, None
    if not self.do_sample:
      topk_log_probs, topk_ids = self._greedy(probs)
    else:
Poorva Potdar's avatar
Poorva Potdar committed
91
      temperature_fn = self.sample_logits_with_temperature
Poorva Potdar's avatar
Poorva Potdar committed
92
93
94
95
      probs = tf.cond(self.sample_temperature > 0.0,
                      lambda: temperature_fn(probs, self.sample_temperature),
                      lambda: probs)
      probs = tf.cond(self.top_k is not None and self.top_k > 1,
Poorva Potdar's avatar
Poorva Potdar committed
96
                      lambda: self._sample_top_k(probs, self.top_k),
Poorva Potdar's avatar
Poorva Potdar committed
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
                      lambda: probs)
      topk_ids = tf.random.categorical(probs, dtype=tf.int32, num_samples=1)
      topk_log_probs = tf.gather(
          original_log_probs, topk_ids, axis=1, batch_dims=1)
    if self.padded_decode:
      topk_seq = tf.transpose(alive_seq, perm=[1, 0])
      topk_seq = tf.tensor_scatter_nd_update(
          topk_seq, [[i + 1]], tf.expand_dims(tf.squeeze(topk_ids, -1), 0))
      topk_seq = tf.transpose(topk_seq, perm=[1, 0])
    else:
      topk_seq = tf.concat([alive_seq, topk_ids], axis=-1)
    return topk_seq, topk_log_probs, topk_ids, new_cache

  def _create_initial_state(self,
                            initial_ids: tf.Tensor,
                            initial_cache: Dict[str, tf.Tensor],
                            batch_size: int) -> decoding_module.InitialState:
    """Return initial state dictionary and its shape invariants."""
    for key, value in initial_cache.items():
      for inner_value in tf.nest.flatten(value):
        if inner_value.dtype != self.dtype:
          raise TypeError(
              "initial_cache element for key '%s' has dtype %s that does not "
              "match SequenceBeamSearch's dtype of %s. Value: %s" %
              (key, value.dtype.name, self.dtype.name, inner_value))

    # Current loop index (starts at 0)
    cur_index = tf.constant(0)

    # Alive sequence with shape [batch_size, 1]
    alive_seq = initial_ids
    alive_seq = tf.expand_dims(alive_seq, axis=-1)
    if self.padded_decode:
      alive_seq = tf.tile(alive_seq, [1, self.max_decode_length + 1])

    # Initial log probabilities with shape [batch_size, 1].
    initial_log_probs = tf.constant([[0.]], dtype=self.dtype)
    alive_log_probs = tf.tile(initial_log_probs, [batch_size, 1])

    alive_cache = initial_cache

    # Initialize tensor storing finished sequences [batch_size, 1, 1].
    finished_seq = tf.zeros(tf.shape(alive_seq), tf.int32)

    # Set scores of the initial finished seqs to negative infinity.
    finished_scores = tf.zeros([batch_size, 1], dtype=self.dtype)

    # Initialize finished flags with all False values.
    finished_flags = tf.zeros([batch_size, 1], tf.bool)

    # Create state dictionary and state shapes.
    state = {
        decoding_module.StateKeys.CUR_INDEX: cur_index,
        decoding_module.StateKeys.ALIVE_SEQ: alive_seq,
        decoding_module.StateKeys.ALIVE_LOG_PROBS: alive_log_probs,
        decoding_module.StateKeys.ALIVE_CACHE: alive_cache,
        decoding_module.StateKeys.FINISHED_SEQ: finished_seq,
        decoding_module.StateKeys.FINISHED_SCORES: finished_scores,
        decoding_module.StateKeys.FINISHED_FLAGS: finished_flags
    }

    if self.padded_decode:
      state_shape_invariants = {
          decoding_module.StateKeys.CUR_INDEX:
              tf.TensorShape([]),
          decoding_module.StateKeys.ALIVE_SEQ:
              tf.TensorShape(
                  [batch_size, self.max_decode_length + 1]),
          decoding_module.StateKeys.ALIVE_LOG_PROBS:
              tf.TensorShape([batch_size, 1]),
          decoding_module.StateKeys.ALIVE_CACHE:
              tf.nest.map_structure(lambda state: state.get_shape(),
                                    alive_cache),
          decoding_module.StateKeys.FINISHED_SEQ:
              tf.TensorShape(
                  [batch_size, self.max_decode_length + 1]),
          decoding_module.StateKeys.FINISHED_SCORES:
              tf.TensorShape([batch_size, 1]),
          decoding_module.StateKeys.FINISHED_FLAGS:
              tf.TensorShape([batch_size, 1])
      }
    else:
      state_shape_invariants = {
          decoding_module.StateKeys.CUR_INDEX:
              tf.TensorShape([]),
          decoding_module.StateKeys.ALIVE_SEQ:
              tf.TensorShape([None, None]),
          decoding_module.StateKeys.ALIVE_LOG_PROBS:
              tf.TensorShape([None, 1]),
          decoding_module.StateKeys.ALIVE_CACHE:
              tf.nest.map_structure(
                  decoding_module.DecodingModule._get_shape_keep_last_dim,
                  alive_cache),
          decoding_module.StateKeys.FINISHED_SEQ:
              tf.TensorShape([None, None]),
          decoding_module.StateKeys.FINISHED_SCORES:
              tf.TensorShape([None, 1]),
          decoding_module.StateKeys.FINISHED_FLAGS:
              tf.TensorShape([None, 1])
      }

    return state, state_shape_invariants

  def _get_new_alive_state(
      self,
      new_seq: tf.Tensor,
      new_log_probs: tf.Tensor,
      new_finished_flags: tf.Tensor,
      new_cache: Dict[str, tf.Tensor]) -> Dict[str, Any]:
    """Gather the sequences that are still alive.

    This function resets the sequences in the alive_state that are finished.

    Args:
      new_seq: New sequences generated by growing the current alive sequences
        int32 tensor with shape [batch_size, cur_index + 1]
      new_log_probs: Log probabilities of new sequences float32 tensor with
        shape [batch_size, 1]
      new_finished_flags: A boolean Tensor indicates which sequences are live
        inside the beam.
      new_cache: Dict of cached values for each sequence.

    Returns:
      Dictionary with alive keys.
    """
    new_seq = tf.multiply(
        new_seq, tf.cast(tf.logical_not(new_finished_flags), new_seq.dtype))
    return {
        decoding_module.StateKeys.ALIVE_SEQ: new_seq,
        decoding_module.StateKeys.ALIVE_LOG_PROBS: new_log_probs,
        decoding_module.StateKeys.ALIVE_CACHE: new_cache
    }

  def _get_new_finished_state(self,
                              state: Dict[str, Any],
                              new_seq: tf.Tensor,
                              new_log_probs: tf.Tensor,
                              new_finished_flags: tf.Tensor,
                              batch_size: int) -> Dict[str, tf.Tensor]:
    """Combine new and old finished sequences.

    Args:
      state: A dictionary with the current loop state.
      new_seq: New sequences generated by growing the current alive sequences
        int32 tensor [batch, curr_index + 1] or [batch, max_decode_length + 1].
      new_log_probs: Log probabilities of new sequences float32 tensor with
        shape [batch, 1].
      new_finished_flags: A boolean Tensor indicates which sequences are live.
      batch_size: The given batch size.

    Returns:
      Dictionary with finished keys from StateKeys.
    """
    i = state[decoding_module.StateKeys.CUR_INDEX]
    finished_seq = state[decoding_module.StateKeys.FINISHED_SEQ]
    finished_scores = state[decoding_module.StateKeys.FINISHED_SCORES]
    finished_flags = state[decoding_module.StateKeys.FINISHED_FLAGS]

    if not self.padded_decode:
      finished_seq = tf.concat(
          [finished_seq, tf.zeros([batch_size, 1], tf.int32)], axis=-1)
    new_scores = new_log_probs
    if self.length_normalization_fn is not None:
      length_norm = self.length_normalization_fn(i + 1, self.dtype)
      new_scores = new_log_probs / length_norm
    new_seq = tf.multiply(
        new_seq, tf.cast(tf.logical_not(finished_flags), new_seq.dtype))
    new_scores = tf.multiply(
        new_scores, tf.cast(tf.logical_not(finished_flags), new_scores.dtype))

    finished_seq += tf.multiply(new_seq,
                                tf.cast(new_finished_flags, new_seq.dtype))
    finished_scores += tf.multiply(
        new_scores, tf.cast(new_finished_flags, new_scores.dtype))
    new_finished_flags = tf.logical_or(new_finished_flags, finished_flags)
    return {
        decoding_module.StateKeys.FINISHED_SEQ: finished_seq,
        decoding_module.StateKeys.FINISHED_SCORES: finished_scores,
        decoding_module.StateKeys.FINISHED_FLAGS: new_finished_flags
    }

  def _process_finished_state(
      self, finished_state: Dict[str, Any]) -> decoding_module.Output:
    """Process the alive/finished state to return final sequences and scores."""
    alive_seq = finished_state[decoding_module.StateKeys.ALIVE_SEQ]
    alive_log_probs = finished_state[decoding_module.StateKeys.ALIVE_LOG_PROBS]
    finished_seq = finished_state[decoding_module.StateKeys.FINISHED_SEQ]
    finished_scores = finished_state[decoding_module.StateKeys.FINISHED_SCORES]
    finished_flags = finished_state[decoding_module.StateKeys.FINISHED_FLAGS]
    finished_cond = tf.reduce_any(finished_flags, 1, name="finished_cond")
    if self.length_normalization_fn is not None:
      length_norm = self.length_normalization_fn(self.max_decode_length + 1,
                                                 self.dtype)
      alive_log_probs = alive_log_probs / length_norm
    seq_cond = decoding_module.DecodingModule._expand_to_same_rank(
        finished_cond, finished_seq)
    score_cond = decoding_module.DecodingModule._expand_to_same_rank(
        finished_cond, finished_scores)
    finished_seq = tf.where(seq_cond, finished_seq, alive_seq, finished_scores)
    finished_scores = tf.where(score_cond, finished_scores, alive_log_probs)
    return finished_seq, finished_scores

  def _continue_search(self, state) -> tf.Tensor:
    i = state[decoding_module.StateKeys.CUR_INDEX]
    return tf.less(i, self.max_decode_length)

  def _finished_flags(self, topk_ids, state) -> tf.Tensor:
    new_finished_flags = tf.equal(topk_ids, self.eos_id)
    new_finished_flags = tf.logical_or(
        new_finished_flags, state[decoding_module.StateKeys.FINISHED_FLAGS])
    return new_finished_flags

  @property
  def do_sample(self) -> bool:
    """Returns True if top_p or top_k is enabled."""
    # TODO(poorvap) : Add the check for top_p.
    if self.top_k is not None:
      return True
    return False

  @staticmethod
  def _greedy(log_probs):
    """Returns the top ids and scores based on greedy decoding."""
    log_probs, ids = tf.nn.top_k(log_probs, k=1)
    return log_probs, ids

  @staticmethod
  def sample_logits_with_temperature(logits, temperature):
    """Applies a sampling temperature.

       Temperature of [0, 1) skews the distribution towards high probability
       tokens and lowers the mass in tail distribution.

    Args:
      logits: Input logits for next token.
      temperature: Tensor for specifying the sampling temperature.

    Returns:
      Logits with applied temperature.
    """
    return logits / temperature

  @staticmethod
  def _sample_top_k(logits, top_k):
    """Chooses top_k logits and sets the others to negative infinity.

    Args:
      logits: Input logits for next token.
      top_k: Tensor to specify the top_k values.

    Returns:
      Logits with top_k filtering apploed.
    """
    top_k_logits = tf.math.top_k(logits, k=top_k)
    indices_to_remove = logits < top_k_logits[0][..., -1, None]
    top_k_logits = SamplingModule._set_tensor_by_indices_to_value(
        logits, indices_to_remove, np.NINF)
    return top_k_logits

  @staticmethod
  def _set_tensor_by_indices_to_value(input_tensor, indices, value):
    """Where indices is True, set the value in input_tensor to value.

    Args:
      input_tensor: float (batch_size, dim)
      indices: bool (batch_size, dim)
      value: float scalar
    Returns:
      output_tensor: same shape as input_tensor.
    """
    value_tensor = tf.zeros_like(input_tensor) + value
    output_tensor = tf.where(indices, value_tensor, input_tensor)
    return output_tensor