spatial_transformer.py 7.71 KB
Newer Older
David Dao's avatar
David Dao committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
# Copyright 2016 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
import tensorflow as tf

Timur's avatar
Timur committed
17
def transformer(U, theta, out_size, name='SpatialTransformer', **kwargs):
David Dao's avatar
David Dao committed
18
19
20
21
22
23
24
25
26
27
28
29
30
    """Spatial Transformer Layer
    
    Implements a spatial transformer layer as described in [1]_.
    Based on [2]_ and edited by David Dao for Tensorflow.
    
    Parameters
    ----------
    U : float 
        The output of a convolutional net should have the
        shape [num_batch, height, width, num_channels]. 
    theta: float   
        The output of the
        localisation network should be [num_batch, 6].
Timur's avatar
Timur committed
31
32
33
    out_size: tuple of two floats
        The size of the output of the network

David Dao's avatar
David Dao committed
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
    References
    ----------
    .. [1]  Spatial Transformer Networks
            Max Jaderberg, Karen Simonyan, Andrew Zisserman, Koray Kavukcuoglu
            Submitted on 5 Jun 2015
    .. [2]  https://github.com/skaae/transformer_network/blob/master/transformerlayer.py
            
    Notes
    -----
    To initialize the network to the identity transform init
    ``theta`` to :
        identity = np.array([[1., 0., 0.],
                             [0., 1., 0.]]) 
        identity = identity.flatten()
        theta = tf.Variable(initial_value=identity)
        
    """
    
    def _repeat(x, n_repeats):
        with tf.variable_scope('_repeat'):
            rep = tf.transpose(tf.expand_dims(tf.ones(shape=tf.pack([n_repeats,])),1),[1,0])
            rep = tf.cast(rep, 'int32')
            x = tf.matmul(tf.reshape(x,(-1, 1)), rep)
            return tf.reshape(x,[-1])

Timur's avatar
Timur committed
59
    def _interpolate(im, x, y, out_size):
David Dao's avatar
David Dao committed
60
61
62
63
64
65
66
67
68
69
70
        with tf.variable_scope('_interpolate'):
            # constants
            num_batch = tf.shape(im)[0]
            height = tf.shape(im)[1]
            width = tf.shape(im)[2]
            channels = tf.shape(im)[3]

            x = tf.cast(x, 'float32')
            y = tf.cast(y, 'float32')
            height_f = tf.cast(height, 'float32')
            width_f = tf.cast(width, 'float32')
Timur's avatar
Timur committed
71
72
            out_height = out_size[0]
            out_width = out_size[1] 
David Dao's avatar
David Dao committed
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
            zero = tf.zeros([], dtype='int32')
            max_y = tf.cast(tf.shape(im)[1] - 1, 'int32')
            max_x = tf.cast(tf.shape(im)[2] - 1, 'int32')

            # scale indices from [-1, 1] to [0, width/height]
            x = (x + 1.0)*(width_f) / 2.0 
            y = (y + 1.0)*(height_f) / 2.0

            # do sampling
            x0 = tf.cast(tf.floor(x), 'int32')
            x1 = x0 + 1
            y0 = tf.cast(tf.floor(y), 'int32')
            y1 = y0 + 1

            x0 = tf.clip_by_value(x0, zero, max_x)
            x1 = tf.clip_by_value(x1, zero, max_x)
            y0 = tf.clip_by_value(y0, zero, max_y)
            y1 = tf.clip_by_value(y1, zero, max_y)
            dim2 = width
            dim1 = width*height
            base = _repeat(tf.range(num_batch)*dim1, out_height*out_width)
            base_y0 = base + y0*dim2
            base_y1 = base + y1*dim2
            idx_a = base_y0 + x0
            idx_b = base_y1 + x0
            idx_c = base_y0 + x1
            idx_d = base_y1 + x1

            # use indices to lookup pixels in the flat image and restore channels dim
            im_flat = tf.reshape(im,tf.pack([-1, channels]))
            im_flat = tf.cast(im_flat, 'float32')
            Ia = tf.gather(im_flat, idx_a)
            Ib = tf.gather(im_flat, idx_b)
            Ic = tf.gather(im_flat, idx_c)
            Id = tf.gather(im_flat, idx_d)

            # and finally calculate interpolated values
            x0_f = tf.cast(x0, 'float32')
            x1_f = tf.cast(x1, 'float32')
            y0_f = tf.cast(y0, 'float32')
            y1_f = tf.cast(y1, 'float32')
            wa = tf.expand_dims(((x1_f-x) * (y1_f-y)),1)
            wb = tf.expand_dims(((x1_f-x) * (y-y0_f)),1)
            wc = tf.expand_dims(((x-x0_f) * (y1_f-y)),1)
            wd = tf.expand_dims(((x-x0_f) * (y-y0_f)),1)
            output = tf.add_n([wa*Ia, wb*Ib, wc*Ic, wd*Id])
            return output
    
    def _meshgrid(height, width):
        with tf.variable_scope('_meshgrid'):
            # This should be equivalent to:
            #  x_t, y_t = np.meshgrid(np.linspace(-1, 1, width),
            #                         np.linspace(-1, 1, height))
            #  ones = np.ones(np.prod(x_t.shape))
            #  grid = np.vstack([x_t.flatten(), y_t.flatten(), ones])
            x_t = tf.matmul(tf.ones(shape=tf.pack([height, 1])),
                        tf.transpose(tf.expand_dims(tf.linspace(-1.0, 1.0, width),1),[1,0])) 
            y_t = tf.matmul(tf.expand_dims(tf.linspace(-1.0, 1.0, height),1),
                        tf.ones(shape=tf.pack([1, width]))) 

            x_t_flat = tf.reshape(x_t,(1, -1))
            y_t_flat = tf.reshape(y_t,(1, -1))

            ones = tf.ones_like(x_t_flat)
            grid = tf.concat(0, [x_t_flat, y_t_flat, ones])
            return grid

Timur's avatar
Timur committed
140
    def _transform(theta, input_dim, out_size):
David Dao's avatar
David Dao committed
141
142
143
144
145
146
147
148
149
150
151
        with tf.variable_scope('_transform'):
            num_batch = tf.shape(input_dim)[0]
            height = tf.shape(input_dim)[1]
            width = tf.shape(input_dim)[2]            
            num_channels = tf.shape(input_dim)[3]
            theta = tf.reshape(theta, (-1, 2, 3))
            theta = tf.cast(theta, 'float32')

            # grid of (x_t, y_t, 1), eq (1) in ref [1]
            height_f = tf.cast(height, 'float32')
            width_f = tf.cast(width, 'float32')
Timur's avatar
Timur committed
152
153
            out_height = out_size[0]
            out_width = out_size[1] 
David Dao's avatar
David Dao committed
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
            grid = _meshgrid(out_height, out_width)
            grid = tf.expand_dims(grid,0)
            grid = tf.reshape(grid,[-1])
            grid = tf.tile(grid,tf.pack([num_batch]))
            grid = tf.reshape(grid,tf.pack([num_batch, 3, -1])) 
            
            # Transform A x (x_t, y_t, 1)^T -> (x_s, y_s)
            T_g = tf.batch_matmul(theta, grid)
            x_s = tf.slice(T_g, [0,0,0], [-1,1,-1])
            y_s = tf.slice(T_g, [0,1,0], [-1,1,-1])
            x_s_flat = tf.reshape(x_s,[-1])
            y_s_flat = tf.reshape(y_s,[-1])

            input_transformed = _interpolate(
                  input_dim, x_s_flat, y_s_flat,
Timur's avatar
Timur committed
169
                  out_size)
David Dao's avatar
David Dao committed
170
171
172
173
174

            output = tf.reshape(input_transformed, tf.pack([num_batch, out_height, out_width, num_channels]))
            return output
    
    with tf.variable_scope(name):
Timur's avatar
Timur committed
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
        output = _transform(theta, U, out_size)
        return output

def batch_transformer(U, thetas, out_size, name='BatchSpatialTransformer'):
    """Batch Spatial Transformer Layer

    Parameters
    ----------
    
    U : float
        tensor of inputs [num_batch,height,width,num_channels]
    thetas : float
        a set of transformations for each input [num_batch,num_transforms,6]
    out_size : int
        the size of the output [out_height,out_width]

    Returns: float
        Tensor of size [num_batch*num_transforms,out_height,out_width,num_channels]
    """
    with tf.variable_scope(name):
        num_batch, num_transforms = map(int, thetas.get_shape().as_list()[:2])
        indices = [[i]*num_transforms for i in xrange(num_batch)]
        input_repeated = tf.gather(U, tf.reshape(indices, [-1]))
        return transformer(input_repeated, thetas, out_size)