index.ipynb 31.5 KB
Newer Older
Mark Daoust's avatar
Mark Daoust committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
{
  "cells": [
    {
      "cell_type": "markdown",
      "metadata": {
        "id": "Tce3stUlHN0L"
      },
      "source": [
        "##### Copyright 2020 The TensorFlow Authors."
      ]
    },
    {
      "cell_type": "code",
      "execution_count": null,
      "metadata": {
        "cellView": "form",
        "id": "tuOe1ymfHZPu"
      },
      "outputs": [],
      "source": [
        "#@title Licensed under the Apache License, Version 2.0 (the \"License\");\n",
        "# you may not use this file except in compliance with the License.\n",
        "# You may obtain a copy of the License at\n",
        "#\n",
        "# https://www.apache.org/licenses/LICENSE-2.0\n",
        "#\n",
        "# Unless required by applicable law or agreed to in writing, software\n",
        "# distributed under the License is distributed on an \"AS IS\" BASIS,\n",
        "# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.\n",
        "# See the License for the specific language governing permissions and\n",
        "# limitations under the License."
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "id": "qFdPvlXBOdUN"
      },
      "source": [
        "# Training with Orbit"
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "id": "MfBg1C5NB3X0"
      },
      "source": [
        "\u003ctable class=\"tfo-notebook-buttons\" align=\"left\"\u003e\n",
        "  \u003ctd\u003e\n",
        "    \u003ca target=\"_blank\" href=\"https://www.tensorflow.org/tfmodels/orbit\"\u003e\u003cimg src=\"https://www.tensorflow.org/images/tf_logo_32px.png\" /\u003eView on TensorFlow.org\u003c/a\u003e\n",
        "  \u003c/td\u003e\n",
        "  \u003ctd\u003e\n",
        "    \u003ca target=\"_blank\" href=\"https://colab.research.google.com/github/tensorflow/models/blob/master/docs/orbit/index.ipynb\"\u003e\u003cimg src=\"https://www.tensorflow.org/images/colab_logo_32px.png\" /\u003eRun in Google Colab\u003c/a\u003e\n",
        "  \u003c/td\u003e\n",
        "  \u003ctd\u003e\n",
        "    \u003ca target=\"_blank\" href=\"https://github.com/tensorflow/models/blob/master/docs/orbit/index.ipynb\"\u003e\u003cimg src=\"https://www.tensorflow.org/images/GitHub-Mark-32px.png\" /\u003eView on GitHub\u003c/a\u003e\n",
        "  \u003c/td\u003e\n",
        "  \u003ctd\u003e\n",
        "    \u003ca href=\"https://storage.googleapis.com/tensorflow_docs/models/docs/orbit/index.ipynb\"\u003e\u003cimg src=\"https://www.tensorflow.org/images/download_logo_32px.png\" /\u003eDownload notebook\u003c/a\u003e\n",
        "  \u003c/td\u003e\n",
        "\n",
        "\u003c/table\u003e"
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "id": "456h0idS2Xcq"
      },
      "source": [
        "This example will work through fine-tuning a BERT model using the [Orbit](https://www.tensorflow.org/api_docs/python/orbit) training library.\n",
        "\n",
        "Orbit is a flexible, lightweight library designed to make it easy to write [custom training loops](https://www.tensorflow.org/tutorials/distribute/custom_training) in TensorFlow. Orbit handles common model training tasks such as saving checkpoints, running model evaluations, and setting up summary writing, while giving users full control over implementing the inner training loop. It integrates with `tf.distribute` and supports running on different device types (CPU, GPU, and TPU).\n",
        "\n",
        "Most examples on [tensorflow.org](https://www.tensorflow.org/) use custom training loops or  [model.fit()](https://www.tensorflow.org/api_docs/python/tf/keras/Model) from Keras. Orbit is a good alternative to `model.fit` if your model is complex and your training loop requires more flexibility, control, or customization. Also, using Orbit can simplify the code when there are many different model architectures that all use the same custom training loop.\n",
        "\n",
        "This tutorial focuses on setting up and using Orbit, rather than details about BERT, model construction, and data processing. For more in-depth tutorials on these topics, refer to the following tutorials:\n",
        "\n",
        "* [Fine tune BERT](https://www.tensorflow.org/text/tutorials/fine_tune_bert) - which goes into detail on these sub-topics.\n",
        "* [Fine tune BERT for GLUE on TPU](https://www.tensorflow.org/text/tutorials/bert_glue) - which generalizes the code to run any BERT configuration on any [GLUE](https://www.tensorflow.org/datasets/catalog/glue) sub-task, and runs on TPU."
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "id": "TJ4m3khW3p_W"
      },
      "source": [
        "## Install the TensorFlow Models package\n",
        "\n",
        "Install and import the necessary packages, then configure all the objects necessary for training a model.\n",
        "\n"
      ]
    },
    {
      "cell_type": "code",
      "execution_count": null,
      "metadata": {
        "id": "FZlj0U8Aq9Gt"
      },
      "outputs": [],
      "source": [
104
105
        "!pip install -q opencv-python\n",
        "!pip install tensorflow>=2.9.0 tf-models-official"
Mark Daoust's avatar
Mark Daoust committed
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "id": "MEJkRrmapr16"
      },
      "source": [
        "The `tf-models-official` package contains both the `orbit` and `tensorflow_models` modules."
      ]
    },
    {
      "cell_type": "code",
      "execution_count": null,
      "metadata": {
        "id": "dUVPW84Zucuq"
      },
      "outputs": [],
      "source": [
        "import tensorflow_models as tfm\n",
        "import orbit"
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "id": "18Icocf3lwYD"
      },
      "source": [
        "## Setup for training\n",
        "\n",
        "This tutorial does not focus on configuring the environment, building the model and optimizer, and loading data. All these techniques are covered in more detail in the [Fine tune BERT](https://www.tensorflow.org/text/tutorials/fine_tune_bert) and [Fine tune BERT with GLUE](https://www.tensorflow.org/text/tutorials/bert_glue) tutorials.\n",
        "\n",
        "To view how the training is set up for this tutorial, expand the rest of this section.\n",
        "\n",
        "  \u003c!-- \u003cdiv class=\"tfo-display-only-on-site\"\u003e\u003cdevsite-expandable\u003e\n",
        "  \u003cbutton type=\"button\" class=\"button-red button expand-control\"\u003eExpand Section\u003c/button\u003e --\u003e"
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "id": "Ljy0z-i3okCS"
      },
      "source": [
        "### Import the necessary packages\n",
        "\n",
        "Import the BERT model and dataset building library from [Tensorflow Model Garden](https://github.com/tensorflow/models)."
      ]
    },
    {
      "cell_type": "code",
      "execution_count": null,
      "metadata": {
        "id": "gCBo6wxA2b5n"
      },
      "outputs": [],
      "source": [
        "import glob\n",
        "import os\n",
        "import pathlib\n",
        "import tempfile\n",
        "import time\n",
        "\n",
        "import numpy as np\n",
        "\n",
        "import tensorflow as tf"
      ]
    },
    {
      "cell_type": "code",
      "execution_count": null,
      "metadata": {
        "id": "PG1kwhnvq3VC"
      },
      "outputs": [],
      "source": [
        "from official.nlp.data import sentence_prediction_dataloader\n",
        "from official.nlp import optimization"
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "id": "PsbhUV_p3wxN"
      },
      "source": [
        "### Configure the distribution strategy\n",
        "\n",
        "While `tf.distribute` won't help the model's runtime if you're running on a single machine or GPU, it's necessary for TPUs. Setting up a distribution strategy allows you to use the same code regardless of the configuration."
      ]
    },
    {
      "cell_type": "code",
      "execution_count": null,
      "metadata": {
        "id": "PG702dqstXIk"
      },
      "outputs": [],
      "source": [
        "logical_device_names = [logical_device.name for logical_device in tf.config.list_logical_devices()]\n",
        "\n",
        "if 'GPU' in ''.join(logical_device_names):\n",
        "  strategy = tf.distribute.MirroredStrategy()\n",
        "elif 'TPU' in ''.join(logical_device_names):\n",
        "  resolver = tf.distribute.cluster_resolver.TPUClusterResolver(tpu='')\n",
        "  tf.config.experimental_connect_to_cluster(resolver)\n",
        "  tf.tpu.experimental.initialize_tpu_system(resolver)\n",
        "  strategy = tf.distribute.TPUStrategy(resolver)\n",
        "else:\n",
        "  strategy = tf.distribute.OneDeviceStrategy(logical_device_names[0])\n"
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "id": "eaQgM98deAMu"
      },
      "source": [
        "For more information about the TPU setup, refer to the [TPU guide](https://www.tensorflow.org/guide/tpu)."
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "id": "7aOxMLLV32Zm"
      },
      "source": [
        "### Create a model and an optimizer"
      ]
    },
    {
      "cell_type": "code",
      "execution_count": null,
      "metadata": {
        "id": "YRdWzOfK3_56"
      },
      "outputs": [],
      "source": [
        "max_seq_length = 128\n",
        "learning_rate = 3e-5\n",
        "num_train_epochs = 3\n",
        "train_batch_size = 32\n",
        "eval_batch_size = 64\n",
        "\n",
        "train_data_size = 3668\n",
        "steps_per_epoch = int(train_data_size / train_batch_size)\n",
        "\n",
        "train_steps = steps_per_epoch * num_train_epochs\n",
        "warmup_steps = int(train_steps * 0.1)\n",
        "\n",
        "print(\"train batch size: \", train_batch_size)\n",
        "print(\"train epochs:     \", num_train_epochs)\n",
        "print(\"steps_per_epoch:  \", steps_per_epoch)"
      ]
    },
    {
      "cell_type": "code",
      "execution_count": null,
      "metadata": {
        "id": "BVw3886Ysse6"
      },
      "outputs": [],
      "source": [
        "model_dir = pathlib.Path(tempfile.mkdtemp())\n",
        "print(model_dir)"
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "id": "mu9cV7ew-cVe"
      },
      "source": [
        "\n",
        "Create a BERT Classifier model and a simple optimizer. They must be created inside `strategy.scope` so that the variables can be distributed. "
      ]
    },
    {
      "cell_type": "code",
      "execution_count": null,
      "metadata": {
        "id": "gmwtX0cp-mj5"
      },
      "outputs": [],
      "source": [
        "with strategy.scope():\n",
        "  encoder_network = tfm.nlp.encoders.build_encoder(\n",
        "      tfm.nlp.encoders.EncoderConfig(type=\"bert\"))\n",
        "  classifier_model = tfm.nlp.models.BertClassifier(\n",
        "      network=encoder_network, num_classes=2)\n",
        "\n",
        "  optimizer = optimization.create_optimizer(\n",
        "      init_lr=3e-5,\n",
        "      num_train_steps=steps_per_epoch * num_train_epochs,\n",
        "      num_warmup_steps=warmup_steps,\n",
        "      end_lr=0.0,\n",
        "      optimizer_type='adamw')"
      ]
    },
    {
      "cell_type": "code",
      "execution_count": null,
      "metadata": {
        "id": "jwJSfewG5jVV"
      },
      "outputs": [],
      "source": [
        "tf.keras.utils.plot_model(classifier_model)"
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "id": "IQy5pYgAf8Ft"
      },
      "source": [
        "### Initialize from a Checkpoint"
      ]
    },
    {
      "cell_type": "code",
      "execution_count": null,
      "metadata": {
        "id": "6CE14GEybgRR"
      },
      "outputs": [],
      "source": [
        "bert_dir = 'gs://cloud-tpu-checkpoints/bert/v3/uncased_L-12_H-768_A-12/'\n",
        "tf.io.gfile.listdir(bert_dir)"
      ]
    },
    {
      "cell_type": "code",
      "execution_count": null,
      "metadata": {
        "id": "x7fwxz9xidKt"
      },
      "outputs": [],
      "source": [
        "bert_checkpoint = bert_dir + 'bert_model.ckpt'"
      ]
    },
    {
      "cell_type": "code",
      "execution_count": null,
      "metadata": {
        "id": "q7EfwVCRe7N_"
      },
      "outputs": [],
      "source": [
        "def init_from_ckpt_fn():\n",
        "  init_checkpoint = tf.train.Checkpoint(**classifier_model.checkpoint_items)\n",
        "  with strategy.scope():\n",
        "    (init_checkpoint\n",
        "     .read(bert_checkpoint)\n",
        "     .expect_partial()\n",
        "     .assert_existing_objects_matched())"
      ]
    },
    {
      "cell_type": "code",
      "execution_count": null,
      "metadata": {
        "id": "M0LUMlsde-2f"
      },
      "outputs": [],
      "source": [
        "with strategy.scope():\n",
        "  init_from_ckpt_fn()"
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "id": "gAuns4vN_IYV"
      },
      "source": [
        "\n",
        "To use Orbit, create a `tf.train.CheckpointManager` object."
      ]
    },
    {
      "cell_type": "code",
      "execution_count": null,
      "metadata": {
        "id": "i7NwM1Jq_MX7"
      },
      "outputs": [],
      "source": [
        "checkpoint = tf.train.Checkpoint(model=classifier_model, optimizer=optimizer)\n",
        "checkpoint_manager = tf.train.CheckpointManager(\n",
        "    checkpoint,\n",
        "    directory=model_dir,\n",
        "    max_to_keep=5,\n",
        "    step_counter=optimizer.iterations,\n",
        "    checkpoint_interval=steps_per_epoch,\n",
        "    init_fn=init_from_ckpt_fn)"
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "id": "nzeiAFhcCOAo"
      },
      "source": [
        "### Create distributed datasets\n",
        "\n",
        "As a shortcut for this tutorial, the [GLUE/MPRC dataset](https://www.tensorflow.org/datasets/catalog/glue#gluemrpc) has been converted to a pair of [TFRecord](https://www.tensorflow.org/tutorials/load_data/tfrecord) files containing serialized `tf.train.Example` protos.\n",
        "\n",
        "The data was converted using [this script](https://github.com/tensorflow/models/blob/r2.9.0/official/nlp/data/create_finetuning_data.py).\n",
        "\n"
      ]
    },
    {
      "cell_type": "code",
      "execution_count": null,
      "metadata": {
        "id": "ZVfbiT1dCnDk"
      },
      "outputs": [],
      "source": [
        "train_data_path = \"gs://download.tensorflow.org/data/model_garden_colab/mrpc_train.tf_record\"\n",
        "eval_data_path = \"gs://download.tensorflow.org/data/model_garden_colab/mrpc_eval.tf_record\"\n",
        "\n",
        "def _dataset_fn(input_file_pattern, \n",
        "                global_batch_size, \n",
        "                is_training, \n",
        "                input_context=None):\n",
        "  data_config = sentence_prediction_dataloader.SentencePredictionDataConfig(\n",
        "    input_path=input_file_pattern,\n",
        "    seq_length=max_seq_length,\n",
        "    global_batch_size=global_batch_size,\n",
        "    is_training=is_training)\n",
        "  return sentence_prediction_dataloader.SentencePredictionDataLoader(\n",
        "      data_config).load(input_context=input_context)\n",
        "\n",
        "train_dataset = orbit.utils.make_distributed_dataset(\n",
        "    strategy, _dataset_fn, input_file_pattern=train_data_path,\n",
        "    global_batch_size=train_batch_size, is_training=True)\n",
        "eval_dataset = orbit.utils.make_distributed_dataset(\n",
        "    strategy, _dataset_fn, input_file_pattern=eval_data_path,\n",
        "    global_batch_size=eval_batch_size, is_training=False)\n",
        "\n"
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "id": "dPgiDBQCjsXW"
      },
      "source": [
        "### Create a loss function\n"
      ]
    },
    {
      "cell_type": "code",
      "execution_count": null,
      "metadata": {
        "id": "7MCUmmo2jvXl"
      },
      "outputs": [],
      "source": [
        "def loss_fn(labels, logits):\n",
        "  \"\"\"Classification loss.\"\"\"\n",
        "  labels = tf.squeeze(labels)\n",
        "  log_probs = tf.nn.log_softmax(logits, axis=-1)\n",
        "  one_hot_labels = tf.one_hot(\n",
        "      tf.cast(labels, dtype=tf.int32), depth=2, dtype=tf.float32)\n",
        "  per_example_loss = -tf.reduce_sum(\n",
        "      tf.cast(one_hot_labels, dtype=tf.float32) * log_probs, axis=-1)\n",
        "  return tf.reduce_mean(per_example_loss)"
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "id": "ohlO-8FQkwsr"
      },
      "source": [
        " \u003c/devsite-expandable\u003e\u003c/div\u003e"
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "id": "ymhbvPaEJ96T"
      },
      "source": [
        "## Controllers, Trainers and Evaluators\n",
        "\n",
        "When using Orbit, the `orbit.Controller` class drives the training. The Controller handles the details of distribution strategies, step counting, TensorBoard summaries, and checkpointing.\n",
        "\n",
        "To implement the training and evaluation, pass a `trainer` and `evaluator`, which are subclass instances of `orbit.AbstractTrainer` and `orbit.AbstractEvaluator`. Keeping with Orbit's light-weight design, these two classes have a minimal interface.\n",
        "\n",
        "The Controller drives training and evaluation by calling `trainer.train(num_steps)` and `evaluator.evaluate(num_steps)`. These `train` and `evaluate` methods return a dictionary of results for logging.\n",
        "\n"
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "id": "a6sU2vBeyXtu"
      },
      "source": [
        "Training is broken into chunks of length `num_steps`. This is set by the Controller's [`steps_per_loop`](https://tensorflow.org/api_docs/python/orbit/Controller#args) argument. With the trainer and evaluator abstract base classes, the meaning of `num_steps` is entirely determined by the implementer.\n",
        "\n",
        "Some common examples include:\n",
        "\n",
        "* Having the chunks represent dataset-epoch boundaries, like the default keras setup. \n",
        "* Using it to more efficiently dispatch a number of training steps to an accelerator with a single `tf.function` call (like the `steps_per_execution` argument to `Model.compile`). \n",
        "* Subdividing into smaller chunks as needed.\n"
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "id": "p4mXGIRJsf1j"
      },
      "source": [
        "### StandardTrainer and StandardEvaluator\n",
        "\n",
        "Orbit provides two additional classes, `orbit.StandardTrainer` and `orbit.StandardEvaluator`, to give more structure around the training and evaluation loops.\n",
        "\n",
        "With StandardTrainer, you only need to set `train_loop_begin`, `train_step`, and `train_loop_end`. The base class handles the loops, dataset logic, and `tf.function` (according to the options set by their `orbit.StandardTrainerOptions`). This is simpler than `orbit.AbstractTrainer`, which requires you to handle the entire loop. StandardEvaluator has a similar structure and simplification to StandardTrainer.\n",
        "\n",
        "This is effectively an implementation of the `steps_per_execution` approach used by Keras."
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "id": "-hvZ8PvohmR5"
      },
      "source": [
        "Contrast this with Keras, where training is divided both into epochs (a single pass over the dataset) and `steps_per_execution`(set within [`Model.compile`](https://www.tensorflow.org/api_docs/python/tf/keras/Model#compile). In Keras, metric averages are typically accumulated over an epoch, and reported \u0026 reset between epochs. For efficiency, `steps_per_execution` only controls the number of training steps made per call.\n",
        "\n",
        "In this simple case, `steps_per_loop` (within `StandardTrainer`) will handle both the metric resets and the number of steps per call.  \n"
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "id": "NoDFN1L-1jIu"
      },
      "source": [
        "The minimal setup when using these base classes is to implement the methods as follows:\n",
        "\n",
        "1. `StandardTrainer.train_loop_begin` - Reset your training metrics.\n",
        "2. `StandardTrainer.train_step` - Apply a single gradient update.\n",
        "3. `StandardTrainer.train_loop_end` - Report your training metrics.\n",
        "\n",
        "and\n",
        "\n",
        "4. `StandardEvaluator.eval_begin` - Reset your evaluation metrics.\n",
        "5. `StandardEvaluator.eval_step` - Run a single evaluation setep.\n",
        "6. `StandardEvaluator.eval_reduce` - This is not necessary in this simple setup.\n",
        "7. `StandardEvaluator.eval_end` - Report your evaluation metrics.\n",
        "\n",
        "Depending on the settings, the base class may wrap the `train_step` and `eval_step` code in `tf.function` or `tf.while_loop`, which has some limitations compared to standard python."
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "id": "3KPA0NDZt2JD"
      },
      "source": [
        "### Define the trainer class"
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "id": "6LDPsvJwfuPR"
      },
      "source": [
        "In this section you'll create a subclass of `orbit.StandardTrainer` for this task.  \n",
        "\n",
        "Note: To better explain the `BertClassifierTrainer` class, this section defines each method as a stand-alone function and assembles them into a class at the end.\n",
        "\n",
        "The trainer needs access to the training data, model, optimizer, and distribution strategy. Pass these as arguments to the initializer.\n",
        "\n",
        "Define a single training metric, `training_loss`, using `tf.keras.metrics.Mean`. "
      ]
    },
    {
      "cell_type": "code",
      "execution_count": null,
      "metadata": {
        "id": "6DQYZN5ax-MG"
      },
      "outputs": [],
      "source": [
        "def trainer_init(self,\n",
        "                 train_dataset,\n",
        "                 model,\n",
        "                 optimizer,\n",
        "                 strategy):\n",
        "  self.strategy = strategy\n",
        "  with self.strategy.scope():\n",
        "    self.model = model\n",
        "    self.optimizer = optimizer\n",
        "    self.global_step = self.optimizer.iterations\n",
        "    \n",
        "\n",
        "    self.train_loss = tf.keras.metrics.Mean(\n",
        "        'training_loss', dtype=tf.float32)\n",
        "    orbit.StandardTrainer.__init__(self, train_dataset)\n"
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "id": "QOwHD7U5hVue"
      },
      "source": [
        "Before starting a run of the training loop, the `train_loop_begin` method will reset the `train_loss` metric."
      ]
    },
    {
      "cell_type": "code",
      "execution_count": null,
      "metadata": {
        "id": "AkpcHqXShWL0"
      },
      "outputs": [],
      "source": [
        "def train_loop_begin(self):\n",
        "  self.train_loss.reset_states()"
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "id": "UjtFOFyxn2BB"
      },
      "source": [
        "The `train_step` is a straight-forward loss-calculation and gradient update that is run by the distribution strategy. This is accomplished by defining the gradient step as a nested function (`step_fn`).\n",
        "\n",
        "The method receives `tf.distribute.DistributedIterator` to handle the [distributed input](https://www.tensorflow.org/tutorials/distribute/input). The method uses `Strategy.run` to execute `step_fn` and feeds it from the distributed iterator.\n",
        "\n"
      ]
    },
    {
      "cell_type": "code",
      "execution_count": null,
      "metadata": {
        "id": "QuPwNnT5I-GP"
      },
      "outputs": [],
      "source": [
        "def train_step(self, iterator):\n",
        "\n",
        "  def step_fn(inputs):\n",
        "    labels = inputs.pop(\"label_ids\")\n",
        "    with tf.GradientTape() as tape:\n",
        "      model_outputs = self.model(inputs, training=True)\n",
        "      # Raw loss is used for reporting in metrics/logs.\n",
        "      raw_loss = loss_fn(labels, model_outputs)\n",
        "      # Scales down the loss for gradients to be invariant from replicas.\n",
        "      loss = raw_loss / self.strategy.num_replicas_in_sync\n",
        "\n",
        "    grads = tape.gradient(loss, self.model.trainable_variables)\n",
        "    optimizer.apply_gradients(zip(grads, self.model.trainable_variables))\n",
        "    # For reporting, the metric takes the mean of losses.\n",
        "    self.train_loss.update_state(raw_loss)\n",
        "\n",
        "  self.strategy.run(step_fn, args=(next(iterator),))"
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "id": "VmQNwx5QpyDt"
      },
      "source": [
        "The `orbit.StandardTrainer` handles the `@tf.function` and loops.\n",
        "\n",
        "After running through `num_steps` of training, `StandardTrainer` calls `train_loop_end`. The function returns the metric results:"
      ]
    },
    {
      "cell_type": "code",
      "execution_count": null,
      "metadata": {
        "id": "GqCyVk1zzGod"
      },
      "outputs": [],
      "source": [
        "def train_loop_end(self):\n",
        "  return {\n",
        "      self.train_loss.name: self.train_loss.result(),\n",
        "  }"
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "id": "xvmLONl80KUv"
      },
      "source": [
        "Build a subclass of `orbit.StandardTrainer` with those methods."
      ]
    },
    {
      "cell_type": "code",
      "execution_count": null,
      "metadata": {
        "id": "oRoL7VE6xt1G"
      },
      "outputs": [],
      "source": [
        "class BertClassifierTrainer(orbit.StandardTrainer):\n",
        "  __init__ = trainer_init\n",
        "  train_loop_begin = train_loop_begin\n",
        "  train_step = train_step\n",
        "  train_loop_end = train_loop_end"
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "id": "yjG4QAWj1B00"
      },
      "source": [
        "### Define the evaluator class\n",
        "\n",
        "Note: Like the previous section, this section defines each method as a stand-alone function and assembles them into a `BertClassifierEvaluator` class at the end.\n",
        "\n",
        "The evaluator is even simpler for this task. It needs access to the evaluation dataset, the model, and the strategy. After saving references to those objects, the constructor just needs to create the metrics."
      ]
    },
    {
      "cell_type": "code",
      "execution_count": null,
      "metadata": {
        "id": "cvX7seCY1CWj"
      },
      "outputs": [],
      "source": [
        "def evaluator_init(self,\n",
        "                   eval_dataset,\n",
        "                   model,\n",
        "                   strategy):\n",
        "  self.strategy = strategy\n",
        "  with self.strategy.scope():\n",
        "    self.model = model\n",
        "    \n",
        "    self.eval_loss = tf.keras.metrics.Mean(\n",
        "        'evaluation_loss', dtype=tf.float32)\n",
        "    self.eval_accuracy = tf.keras.metrics.SparseCategoricalAccuracy(\n",
        "        name='accuracy', dtype=tf.float32)\n",
        "    orbit.StandardEvaluator.__init__(self, eval_dataset)"
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "id": "0r-z-XK7ybyX"
      },
      "source": [
        "Similar to the trainer, the `eval_begin` and `eval_end` methods just need to reset the metrics before the loop and then report the results after the loop."
      ]
    },
    {
      "cell_type": "code",
      "execution_count": null,
      "metadata": {
        "id": "7VVb0Tg6yZjI"
      },
      "outputs": [],
      "source": [
        "def eval_begin(self):\n",
        "  self.eval_accuracy.reset_states()\n",
        "  self.eval_loss.reset_states()\n",
        "\n",
        "def eval_end(self):\n",
        "  return {\n",
        "      self.eval_accuracy.name: self.eval_accuracy.result(),\n",
        "      self.eval_loss.name: self.eval_loss.result(),\n",
        "  }"
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "id": "iDOZcQvttdmZ"
      },
      "source": [
        "The `eval_step` method works like `train_step`. The inner `step_fn` defines the actual work of calculating the loss \u0026 accuracy and updating the metrics. The outer `eval_step` receives `tf.distribute.DistributedIterator` as input, and uses `Strategy.run` to launch the distributed execution to `step_fn`, feeding it from the distributed iterator."
      ]
    },
    {
      "cell_type": "code",
      "execution_count": null,
      "metadata": {
        "id": "JLJnYuuGJjvd"
      },
      "outputs": [],
      "source": [
        "def eval_step(self, iterator):\n",
        "\n",
        "  def step_fn(inputs):\n",
        "    labels = inputs.pop(\"label_ids\")\n",
        "    model_outputs = self.model(inputs, training=True)\n",
        "    loss = loss_fn(labels, model_outputs)\n",
        "    self.eval_loss.update_state(loss)\n",
        "    self.eval_accuracy.update_state(labels, model_outputs)\n",
        "\n",
        "  self.strategy.run(step_fn, args=(next(iterator),))"
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "id": "Gt3hh0V30QcP"
      },
      "source": [
        "Build a subclass of `orbit.StandardEvaluator` with those methods."
      ]
    },
    {
      "cell_type": "code",
      "execution_count": null,
      "metadata": {
        "id": "3zqyLxfNyCgA"
      },
      "outputs": [],
      "source": [
        "class BertClassifierEvaluator(orbit.StandardEvaluator):\n",
        "  __init__ = evaluator_init\n",
        "  eval_begin = eval_begin\n",
        "  eval_end = eval_end\n",
        "  eval_step = eval_step"
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "id": "aK9gEja9qPOc"
      },
      "source": [
        "### End-to-end training and evaluation\n",
        "\n",
        "To run the training and evaluation, simply create the trainer, evaluator, and `orbit.Controller` instances. Then call the `Controller.train_and_evaluate` method."
      ]
    },
    {
      "cell_type": "code",
      "execution_count": null,
      "metadata": {
        "id": "PqQetxyXqRA9"
      },
      "outputs": [],
      "source": [
        "trainer = BertClassifierTrainer(\n",
        "    train_dataset, classifier_model, optimizer, strategy)\n",
        "\n",
        "evaluator = BertClassifierEvaluator(\n",
        "    eval_dataset, classifier_model, strategy)\n",
        "\n",
        "controller = orbit.Controller(\n",
        "    trainer=trainer,\n",
        "    evaluator=evaluator,\n",
        "    global_step=trainer.global_step,\n",
        "    steps_per_loop=20,\n",
        "    checkpoint_manager=checkpoint_manager)\n",
        "\n",
        "result = controller.train_and_evaluate(\n",
        "    train_steps=steps_per_epoch * num_train_epochs,\n",
        "    eval_steps=-1,\n",
        "    eval_interval=steps_per_epoch)"
      ]
    }
  ],
  "metadata": {
    "colab": {
      "collapsed_sections": [
        "Tce3stUlHN0L"
      ],
      "name": "Orbit Tutorial.ipynb",
      "provenance": [],
      "toc_visible": true
    },
    "kernelspec": {
      "display_name": "Python 3",
      "name": "python3"
    }
  },
  "nbformat": 4,
  "nbformat_minor": 0
}