distillation_test.py 6.63 KB
Newer Older
Chen Chen's avatar
Chen Chen committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
# Copyright 2021 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

"""Tests for official.nlp.projects.mobilebert.distillation."""
import os

from absl import logging
import tensorflow as tf
from official.core import config_definitions as cfg
from official.modeling import optimization
from official.modeling import tf_utils
from official.modeling.progressive import trainer as prog_trainer_lib
from official.nlp.configs import bert
from official.nlp.configs import encoders
from official.nlp.data import pretrain_dataloader
from official.nlp.modeling import layers
from official.nlp.modeling import models
from official.nlp.projects.mobilebert import distillation


class DistillationTest(tf.test.TestCase):

  def setUp(self):
    super(DistillationTest, self).setUp()
    # using small model for testing
    self.model_block_num = 2
    self.task_config = distillation.BertDistillationTaskConfig(
        teacher_model=bert.PretrainerConfig(
            encoder=encoders.EncoderConfig(
                type='mobilebert',
                mobilebert=encoders.MobileBertEncoderConfig(
                    num_blocks=self.model_block_num)),
            cls_heads=[
                bert.ClsHeadConfig(
                    inner_dim=256,
                    num_classes=2,
                    dropout_rate=0.1,
                    name='next_sentence')
            ],
            mlm_activation='gelu'),
        student_model=bert.PretrainerConfig(
            encoder=encoders.EncoderConfig(
                type='mobilebert',
                mobilebert=encoders.MobileBertEncoderConfig(
                    num_blocks=self.model_block_num)),
            cls_heads=[
                bert.ClsHeadConfig(
                    inner_dim=256,
                    num_classes=2,
                    dropout_rate=0.1,
                    name='next_sentence')
            ],
            mlm_activation='relu'),
        train_data=pretrain_dataloader.BertPretrainDataConfig(
            input_path='dummy',
            max_predictions_per_seq=76,
            seq_length=512,
            global_batch_size=10),
        validation_data=pretrain_dataloader.BertPretrainDataConfig(
            input_path='dummy',
            max_predictions_per_seq=76,
            seq_length=512,
            global_batch_size=10))

    # set only 1 step for each stage
    progressive_config = distillation.BertDistillationProgressiveConfig()
    progressive_config.layer_wise_distill_config.num_steps = 1
    progressive_config.pretrain_distill_config.num_steps = 1

    optimization_config = optimization.OptimizationConfig(
        optimizer=optimization.OptimizerConfig(
            type='lamb',
            lamb=optimization.LAMBConfig(
                weight_decay_rate=0.0001,
                exclude_from_weight_decay=[
                    'LayerNorm', 'layer_norm', 'bias', 'no_norm'
                ])),
        learning_rate=optimization.LrConfig(
            type='polynomial',
            polynomial=optimization.PolynomialLrConfig(
                initial_learning_rate=1.5e-3,
                decay_steps=10000,
                end_learning_rate=1.5e-3)),
        warmup=optimization.WarmupConfig(
            type='linear',
            linear=optimization.LinearWarmupConfig(warmup_learning_rate=0)))

    self.exp_config = cfg.ExperimentConfig(
        task=self.task_config,
        trainer=prog_trainer_lib.ProgressiveTrainerConfig(
            progressive=progressive_config,
            optimizer_config=optimization_config))

    # Create a teacher model checkpoint.
    teacher_encoder = encoders.build_encoder(
        self.task_config.teacher_model.encoder)
    pretrainer_config = self.task_config.teacher_model
    if pretrainer_config.cls_heads:
      teacher_cls_heads = [
          layers.ClassificationHead(**cfg.as_dict())
          for cfg in pretrainer_config.cls_heads
      ]
    else:
      teacher_cls_heads = []

    masked_lm = layers.MobileBertMaskedLM(
        embedding_table=teacher_encoder.get_embedding_table(),
        activation=tf_utils.get_activation(pretrainer_config.mlm_activation),
        initializer=tf.keras.initializers.TruncatedNormal(
            stddev=pretrainer_config.mlm_initializer_range),
        name='cls/predictions')
    teacher_pretrainer = models.BertPretrainerV2(
        encoder_network=teacher_encoder,
        classification_heads=teacher_cls_heads,
        customized_masked_lm=masked_lm)

    # The model variables will be created after the forward call.
    _ = teacher_pretrainer(teacher_pretrainer.inputs)
    teacher_pretrainer_ckpt = tf.train.Checkpoint(
        **teacher_pretrainer.checkpoint_items)
    teacher_ckpt_path = os.path.join(self.get_temp_dir(), 'teacher_model.ckpt')
    teacher_pretrainer_ckpt.save(teacher_ckpt_path)
    self.task_config.teacher_model_init_checkpoint = self.get_temp_dir()

  def test_task(self):
    bert_distillation_task = distillation.BertDistillationTask(
        strategy=tf.distribute.get_strategy(),
        progressive=self.exp_config.trainer.progressive,
        optimizer_config=self.exp_config.trainer.optimizer_config,
        task_config=self.task_config)
    metrics = bert_distillation_task.build_metrics()
    train_dataset = bert_distillation_task.get_train_dataset(stage_id=0)
    train_iterator = iter(train_dataset)

    eval_dataset = bert_distillation_task.get_eval_dataset(stage_id=0)
    eval_iterator = iter(eval_dataset)
    optimizer = tf.keras.optimizers.SGD(lr=0.1)

    # test train/val step for all stages, including the last pretraining stage
    for stage in range(self.model_block_num + 1):
      step = stage
      bert_distillation_task.update_pt_stage(step)
      model = bert_distillation_task.get_model(stage, None)
      bert_distillation_task.initialize(model)
      bert_distillation_task.train_step(next(train_iterator), model, optimizer,
                                        metrics=metrics)
      bert_distillation_task.validation_step(next(eval_iterator), model,
                                             metrics=metrics)

    logging.info('begin to save and load model checkpoint')
    ckpt = tf.train.Checkpoint(model=model)
    ckpt.save(self.get_temp_dir())

if __name__ == '__main__':
  tf.test.main()