data_preprocessing.py 28.7 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
# Copyright 2018 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Preprocess dataset and construct any necessary artifacts."""

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import atexit
import contextlib
import gc
24
import hashlib
25
26
27
28
29
import multiprocessing
import json
import os
import pickle
import signal
30
import socket
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
import subprocess
import time
import timeit
import typing

# pylint: disable=wrong-import-order
from absl import app as absl_app
from absl import flags
import numpy as np
import pandas as pd
import six
import tensorflow as tf
# pylint: enable=wrong-import-order

from official.datasets import movielens
from official.recommendation import constants as rconst
from official.recommendation import stat_utils
48
from official.recommendation import popen_helper
49
50


51
52
53
54
55
56
57
58
59
60
61
62
DATASET_TO_NUM_USERS_AND_ITEMS = {
    "ml-1m": (6040, 3706),
    "ml-20m": (138493, 26744)
}


# Number of batches to run per epoch when using synthetic data. At high batch
# sizes, we run for more batches than with real data, which is good since
# running more batches reduces noise when measuring the average batches/second.
_SYNTHETIC_BATCHES_PER_EPOCH = 2000


63
64
65
66
class NCFDataset(object):
  """Container for training and testing data."""

  def __init__(self, user_map, item_map, num_data_readers, cache_paths,
67
               num_train_positives, deterministic=False):
68
69
70
71
72
73
74
75
    # type: (dict, dict, int, rconst.Paths) -> None
    """Assign key values for recommendation dataset.

    Args:
      user_map: Dict mapping raw user ids to regularized ids.
      item_map: Dict mapping raw item ids to regularized ids.
      num_data_readers: The number of reader Datasets used during training.
      cache_paths: Object containing locations for various cache files.
76
77
      num_train_positives: The number of positive training examples in the
        dataset.
78
79
      deterministic: Operations should use deterministic, order preserving
        methods, even at the cost of performance.
80
81
82
83
84
85
86
87
88
    """

    self.user_map = {int(k): int(v) for k, v in user_map.items()}
    self.item_map = {int(k): int(v) for k, v in item_map.items()}
    self.num_users = len(user_map)
    self.num_items = len(item_map)
    self.num_data_readers = num_data_readers
    self.cache_paths = cache_paths
    self.num_train_positives = num_train_positives
89
    self.deterministic = deterministic
90
91


92
93
def _filter_index_sort(raw_rating_path, match_mlperf):
  # type: (str, bool) -> (pd.DataFrame, dict, dict)
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
  """Read in data CSV, and output structured data.

  This function reads in the raw CSV of positive items, and performs three
  preprocessing transformations:

  1)  Filter out all users who have not rated at least a certain number
      of items. (Typically 20 items)

  2)  Zero index the users and items such that the largest user_id is
      `num_users - 1` and the largest item_id is `num_items - 1`

  3)  Sort the dataframe by user_id, with timestamp as a secondary sort key.
      This allows the dataframe to be sliced by user in-place, and for the last
      item to be selected simply by calling the `-1` index of a user's slice.

  While all of these transformations are performed by Pandas (and are therefore
  single-threaded), they only take ~2 minutes, and the overhead to apply a
  MapReduce pattern to parallel process the dataset adds significant complexity
  for no computational gain. For a larger dataset parallelizing this
  preprocessing could yield speedups. (Also, this preprocessing step is only
  performed once for an entire run.

  Args:
    raw_rating_path: The path to the CSV which contains the raw dataset.
118
119
    match_mlperf: If True, change the sorting algorithm to match the MLPerf
      reference implementation.
120
121

  Returns:
Reed's avatar
Reed committed
122
123
124
    A filtered, zero-index remapped, sorted dataframe, a dict mapping raw user
    IDs to regularized user IDs, and a dict mapping raw item IDs to regularized
    item IDs.
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
  """
  with tf.gfile.Open(raw_rating_path) as f:
    df = pd.read_csv(f)

  # Get the info of users who have more than 20 ratings on items
  grouped = df.groupby(movielens.USER_COLUMN)
  df = grouped.filter(
      lambda x: len(x) >= rconst.MIN_NUM_RATINGS) # type: pd.DataFrame

  original_users = df[movielens.USER_COLUMN].unique()
  original_items = df[movielens.ITEM_COLUMN].unique()

  # Map the ids of user and item to 0 based index for following processing
  tf.logging.info("Generating user_map and item_map...")
  user_map = {user: index for index, user in enumerate(original_users)}
  item_map = {item: index for index, item in enumerate(original_items)}

  df[movielens.USER_COLUMN] = df[movielens.USER_COLUMN].apply(
      lambda user: user_map[user])
  df[movielens.ITEM_COLUMN] = df[movielens.ITEM_COLUMN].apply(
      lambda item: item_map[item])

  num_users = len(original_users)
  num_items = len(original_items)

  assert num_users <= np.iinfo(np.int32).max
  assert num_items <= np.iinfo(np.uint16).max
  assert df[movielens.USER_COLUMN].max() == num_users - 1
  assert df[movielens.ITEM_COLUMN].max() == num_items - 1

  # This sort is used to shard the dataframe by user, and later to select
  # the last item for a user to be used in validation.
  tf.logging.info("Sorting by user, timestamp...")
158
159
160
161
162
163
164
165
166
167
168
169

  if match_mlperf:
    # This sort is equivalent to the non-MLPerf sort, except that the order of
    # items with the same user and timestamp are sometimes different. For some
    # reason, this sort results in a better hit-rate during evaluation, matching
    # the performance of the MLPerf reference implementation.
    df.sort_values(by=movielens.TIMESTAMP_COLUMN, inplace=True)
    df.sort_values([movielens.USER_COLUMN, movielens.TIMESTAMP_COLUMN],
                   inplace=True, kind="mergesort")
  else:
    df.sort_values([movielens.USER_COLUMN, movielens.TIMESTAMP_COLUMN],
                   inplace=True)
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198

  df = df.reset_index()  # The dataframe does not reconstruct indicies in the
  # sort or filter steps.

  return df, user_map, item_map


def _train_eval_map_fn(args):
  # type: (...) -> typing.Dict(np.ndarray)
  """Split training and testing data and generate testing negatives.

  This function is called as part of a multiprocessing map. The principle
  input is a shard, which contains a sorted array of users and corresponding
  items for each user, where items have already been sorted in ascending order
  by timestamp. (Timestamp is not passed to avoid the serialization cost of
  sending it to the map function.)

  For each user, all but the last item is written into a pickle file which the
  training data producer can consume on as needed. The last item for a user
  is a validation point; for each validation point a number of negatives are
  generated (typically 999). The validation data is returned by this function,
  as it is held in memory for the remainder of the run.

  Args:
    shard: A dict containing the user and item arrays.
    shard_id: The id of the shard provided. This is used to number the training
      shard pickle files.
    num_items: The cardinality of the item set, which determines the set from
      which validation negatives should be drawn.
Reed's avatar
Reed committed
199
200
    cache_paths: rconst.Paths object containing locations for various cache
      files.
201
202
203
    seed: Random seed to be used when generating testing negatives.
    match_mlperf: If True, sample eval negative with replacements, which the
      MLPerf reference implementation does.
204
205
206
207
208

  Returns:
    A dict containing the evaluation data for a given shard.
  """

209
210
  shard, shard_id, num_items, cache_paths, seed, match_mlperf = args
  np.random.seed(seed)
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238

  users = shard[movielens.USER_COLUMN]
  items = shard[movielens.ITEM_COLUMN]

  # This produces index boundaries which can be used to slice by user.
  delta = users[1:] - users[:-1]
  boundaries = ([0] + (np.argwhere(delta)[:, 0] + 1).tolist() +
                [users.shape[0]])

  train_blocks = []
  test_blocks = []
  test_positives = []
  for i in range(len(boundaries) - 1):
    # This is simply a vector of repeated values such that the shard could be
    # represented compactly with a tuple of tuples:
    #   ((user_id, items), (user_id, items), ...)
    # rather than:
    #   user_id_vector, item_id_vector
    # However the additional nested structure significantly increases the
    # serialization and deserialization cost such that it is not worthwhile.
    block_user = users[boundaries[i]:boundaries[i+1]]
    assert len(set(block_user)) == 1

    block_items = items[boundaries[i]:boundaries[i+1]]
    train_blocks.append((block_user[:-1], block_items[:-1]))

    test_negatives = stat_utils.sample_with_exclusion(
        num_items=num_items, positive_set=set(block_items),
239
        n=rconst.NUM_EVAL_NEGATIVES, replacement=match_mlperf)
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
    test_blocks.append((
        block_user[0] * np.ones((rconst.NUM_EVAL_NEGATIVES + 1,),
                                dtype=np.int32),
        np.array([block_items[-1]] + test_negatives, dtype=np.uint16)
    ))
    test_positives.append((block_user[0], block_items[-1]))

  train_users = np.concatenate([i[0] for i in train_blocks])
  train_items = np.concatenate([i[1] for i in train_blocks])

  train_shard_fpath = cache_paths.train_shard_template.format(
      str(shard_id).zfill(5))

  with tf.gfile.Open(train_shard_fpath, "wb") as f:
    pickle.dump({
        movielens.USER_COLUMN: train_users,
        movielens.ITEM_COLUMN: train_items,
    }, f)

  test_users = np.concatenate([i[0] for i in test_blocks])
  test_items = np.concatenate([i[1] for i in test_blocks])
  assert test_users.shape == test_items.shape
  assert test_items.shape[0] % (rconst.NUM_EVAL_NEGATIVES + 1) == 0

  return {
      movielens.USER_COLUMN: test_users,
      movielens.ITEM_COLUMN: test_items,
  }


270
271
272
def generate_train_eval_data(df, approx_num_shards, num_items, cache_paths,
                             match_mlperf):
  # type: (pd.DataFrame, int, int, rconst.Paths, bool) -> None
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
  """Construct training and evaluation datasets.

  This function manages dataset construction and validation that the
  transformations have produced correct results. The particular logic of
  transforming the data is performed in _train_eval_map_fn().

  Args:
    df: The dataframe containing the entire dataset. It is essential that this
      dataframe be produced by _filter_index_sort(), as subsequent
      transformations rely on `df` having particular structure.
    approx_num_shards: The approximate number of similarly sized shards to
      construct from `df`. The MovieLens has severe imbalances where some users
      have interacted with many items; this is common among datasets involving
      user data. Rather than attempt to aggressively balance shard size, this
      function simply allows shards to "overflow" which can produce a number of
      shards which is less than `approx_num_shards`. This small degree of
      imbalance does not impact performance; however it does mean that one
      should not expect approx_num_shards to be the ACTUAL number of shards.
    num_items: The cardinality of the item set.
Reed's avatar
Reed committed
292
293
    cache_paths: rconst.Paths object containing locations for various cache
      files.
294
295
    match_mlperf: If True, sample eval negative with replacements, which the
      MLPerf reference implementation does.
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
  """

  num_rows = len(df)
  approximate_partitions = np.linspace(
      0, num_rows, approx_num_shards + 1).astype("int")
  start_ind, end_ind = 0, 0
  shards = []

  for i in range(1, approx_num_shards + 1):
    end_ind = approximate_partitions[i]
    while (end_ind < num_rows and df[movielens.USER_COLUMN][end_ind - 1] ==
           df[movielens.USER_COLUMN][end_ind]):
      end_ind += 1

    if end_ind <= start_ind:
      continue  # imbalance from prior shard.

    df_shard = df[start_ind:end_ind]
    user_shard = df_shard[movielens.USER_COLUMN].values.astype(np.int32)
    item_shard = df_shard[movielens.ITEM_COLUMN].values.astype(np.uint16)

    shards.append({
        movielens.USER_COLUMN: user_shard,
        movielens.ITEM_COLUMN: item_shard,
    })

    start_ind = end_ind
  assert end_ind == num_rows
  approx_num_shards = len(shards)

  tf.logging.info("Splitting train and test data and generating {} test "
                  "negatives per user...".format(rconst.NUM_EVAL_NEGATIVES))
  tf.gfile.MakeDirs(cache_paths.train_shard_subdir)

330
331
332
333
334
335
  # We choose a different random seed for each process, so that the processes
  # will not all choose the same random numbers.
  process_seeds = [np.random.randint(2**32) for _ in range(approx_num_shards)]
  map_args = [(shards[i], i, num_items, cache_paths, process_seeds[i],
               match_mlperf)
              for i in range(approx_num_shards)]
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
  with contextlib.closing(
      multiprocessing.Pool(multiprocessing.cpu_count())) as pool:
    test_shards = pool.map(_train_eval_map_fn, map_args)  # pylint: disable=no-member

  tf.logging.info("Merging test shards...")
  test_users = np.concatenate([i[movielens.USER_COLUMN] for i in test_shards])
  test_items = np.concatenate([i[movielens.ITEM_COLUMN] for i in test_shards])

  assert test_users.shape == test_items.shape
  assert test_items.shape[0] % (rconst.NUM_EVAL_NEGATIVES + 1) == 0

  test_labels = np.zeros(shape=test_users.shape)
  test_labels[0::(rconst.NUM_EVAL_NEGATIVES + 1)] = 1
  eval_data = ({
      movielens.USER_COLUMN: test_users,
      movielens.ITEM_COLUMN: test_items,
  }, test_labels)

  tf.logging.info("Writing test data to file.")
  tf.gfile.MakeDirs(cache_paths.eval_data_subdir)
  with tf.gfile.Open(cache_paths.eval_raw_file, "wb") as f:
Reed's avatar
Reed committed
357
    pickle.dump(eval_data, f, protocol=pickle.HIGHEST_PROTOCOL)
358
359


360
361
def construct_cache(dataset, data_dir, num_data_readers, match_mlperf,
                    deterministic):
362
  # type: (str, str, int, bool) -> NCFDataset
363
364
365
366
367
368
369
  """Load and digest data CSV into a usable form.

  Args:
    dataset: The name of the dataset to be used.
    data_dir: The root directory of the dataset.
    num_data_readers: The number of parallel processes which will request
      data during training.
370
371
    match_mlperf: If True, change the behavior of the cache construction to
      match the MLPerf reference implementation.
372
373
    deterministic: Try to enforce repeatable behavior, even at the cost of
      performance.
374
375
  """
  cache_paths = rconst.Paths(data_dir=data_dir)
376
377
  num_data_readers = (num_data_readers or int(multiprocessing.cpu_count() / 2)
                      or 1)
378
379
380
381
382
383
384
385
386
387
388
389
  approx_num_shards = int(movielens.NUM_RATINGS[dataset]
                          // rconst.APPROX_PTS_PER_TRAIN_SHARD) or 1

  st = timeit.default_timer()
  cache_root = os.path.join(data_dir, cache_paths.cache_root)
  if tf.gfile.Exists(cache_root):
    raise ValueError("{} unexpectedly already exists."
                     .format(cache_paths.cache_root))
  tf.logging.info("Creating cache directory. This should be deleted on exit.")
  tf.gfile.MakeDirs(cache_paths.cache_root)

  raw_rating_path = os.path.join(data_dir, dataset, movielens.RATINGS_FILE)
390
  df, user_map, item_map = _filter_index_sort(raw_rating_path, match_mlperf)
391
392
393
394
395
396
397
398
  num_users, num_items = DATASET_TO_NUM_USERS_AND_ITEMS[dataset]

  if num_users != len(user_map):
    raise ValueError("Expected to find {} users, but found {}".format(
        num_users, len(user_map)))
  if num_items != len(item_map):
    raise ValueError("Expected to find {} items, but found {}".format(
        num_items, len(item_map)))
399
400

  generate_train_eval_data(df=df, approx_num_shards=approx_num_shards,
401
402
                           num_items=len(item_map), cache_paths=cache_paths,
                           match_mlperf=match_mlperf)
403
404
405
406
407
  del approx_num_shards  # value may have changed.

  ncf_dataset = NCFDataset(user_map=user_map, item_map=item_map,
                           num_data_readers=num_data_readers,
                           cache_paths=cache_paths,
408
409
                           num_train_positives=len(df) - len(user_map),
                           deterministic=deterministic)
410
411
412
413
414
415
416
417
418
419
420
421
422

  run_time = timeit.default_timer() - st
  tf.logging.info("Cache construction complete. Time: {:.1f} sec."
                  .format(run_time))

  return ncf_dataset


def _shutdown(proc):
  # type: (subprocess.Popen) -> None
  """Convenience function to cleanly shut down async generation process."""

  tf.logging.info("Shutting down train data creation subprocess.")
423
424
425
426
427
428
429
430
  try:
    proc.send_signal(signal.SIGINT)
    time.sleep(1)
    if proc.returncode is not None:
      return  # SIGINT was handled successfully within 1 sec

  except socket.error:
    pass
431
432
433
434
435
436
437

  # Otherwise another second of grace period and then forcibly kill the process.
  time.sleep(1)
  proc.terminate()


def instantiate_pipeline(dataset, data_dir, batch_size, eval_batch_size,
438
                         num_data_readers=None, num_neg=4, epochs_per_cycle=1,
439
440
                         match_mlperf=False, deterministic=False):
  # type: (...) -> (NCFDataset, typing.Callable)
441
442
443
444
  """Preprocess data and start negative generation subprocess."""

  tf.logging.info("Beginning data preprocessing.")
  ncf_dataset = construct_cache(dataset=dataset, data_dir=data_dir,
445
                                num_data_readers=num_data_readers,
446
447
                                match_mlperf=match_mlperf,
                                deterministic=deterministic)
448
449
450
451
452
453
454
455
456
457
458
459

  tf.logging.info("Creating training file subprocess.")

  subproc_env = os.environ.copy()

  # The subprocess uses TensorFlow for tf.gfile, but it does not need GPU
  # resources and by default will try to allocate GPU memory. This would cause
  # contention with the main training process.
  subproc_env["CUDA_VISIBLE_DEVICES"] = ""

  # By limiting the number of workers we guarantee that the worker
  # pool underlying the training generation doesn't starve other processes.
460
  num_workers = int(multiprocessing.cpu_count() * 0.75) or 1
461

462
  subproc_args = popen_helper.INVOCATION + [
463
464
465
466
467
468
469
470
471
472
473
474
475
476
      "--data_dir", data_dir,
      "--cache_id", str(ncf_dataset.cache_paths.cache_id),
      "--num_neg", str(num_neg),
      "--num_train_positives", str(ncf_dataset.num_train_positives),
      "--num_items", str(ncf_dataset.num_items),
      "--num_readers", str(ncf_dataset.num_data_readers),
      "--epochs_per_cycle", str(epochs_per_cycle),
      "--train_batch_size", str(batch_size),
      "--eval_batch_size", str(eval_batch_size),
      "--num_workers", str(num_workers),
      "--spillover", "True",  # This allows the training input function to
                              # guarantee batch size and significantly improves
                              # performance. (~5% increase in examples/sec on
                              # GPU, and needed for TPU XLA.)
477
      "--redirect_logs", "True"
478
  ]
479
480
  if ncf_dataset.deterministic:
    subproc_args.extend(["--seed", str(int(stat_utils.random_int32()))])
481
482
483
484

  tf.logging.info(
      "Generation subprocess command: {}".format(" ".join(subproc_args)))

485
  proc = subprocess.Popen(args=subproc_args, shell=False, env=subproc_env)
486

487
488
489
490
491
492
493
494
495
496
497
498
499
500
  cleanup_called = {"finished": False}
  @atexit.register
  def cleanup():
    """Remove files and subprocess from data generation."""
    if cleanup_called["finished"]:
      return

    _shutdown(proc)
    try:
      tf.gfile.DeleteRecursively(ncf_dataset.cache_paths.cache_root)
    except tf.errors.NotFoundError:
      pass

    cleanup_called["finished"] = True
501

502
  for _ in range(300):
503
504
505
506
507
508
509
    if tf.gfile.Exists(ncf_dataset.cache_paths.subproc_alive):
      break
    time.sleep(1)  # allow `alive` file to be written
  if not tf.gfile.Exists(ncf_dataset.cache_paths.subproc_alive):
    raise ValueError("Generation subprocess did not start correctly. Data will "
                     "not be available; exiting to avoid waiting forever.")

510
  return ncf_dataset, cleanup
511
512
513
514
515
516
517
518
519
520


def make_deserialize(params, batch_size, training=False):
  """Construct deserialize function for training and eval fns."""
  feature_map = {
      movielens.USER_COLUMN: tf.FixedLenFeature([], dtype=tf.string),
      movielens.ITEM_COLUMN: tf.FixedLenFeature([], dtype=tf.string),
  }
  if training:
    feature_map["labels"] = tf.FixedLenFeature([], dtype=tf.string)
521
522
  else:
    feature_map[rconst.DUPLICATE_MASK] = tf.FixedLenFeature([], dtype=tf.string)
523
524
525
526
527
528
529
530
531
532
533
534
535

  def deserialize(examples_serialized):
    """Called by Dataset.map() to convert batches of records to tensors."""
    features = tf.parse_single_example(examples_serialized, feature_map)
    users = tf.reshape(tf.decode_raw(
        features[movielens.USER_COLUMN], tf.int32), (batch_size,))
    items = tf.reshape(tf.decode_raw(
        features[movielens.ITEM_COLUMN], tf.uint16), (batch_size,))

    if params["use_tpu"]:
      items = tf.cast(items, tf.int32)  # TPU doesn't allow uint16 infeed.

    if not training:
536
537
      dupe_mask = tf.reshape(tf.cast(tf.decode_raw(
          features[rconst.DUPLICATE_MASK], tf.int8), tf.bool), (batch_size,))
538
539
540
      return {
          movielens.USER_COLUMN: users,
          movielens.ITEM_COLUMN: items,
541
          rconst.DUPLICATE_MASK: dupe_mask,
542
543
544
545
      }

    labels = tf.reshape(tf.cast(tf.decode_raw(
        features["labels"], tf.int8), tf.bool), (batch_size,))
546

547
548
549
550
551
552
553
    return {
        movielens.USER_COLUMN: users,
        movielens.ITEM_COLUMN: items,
    }, labels
  return deserialize


554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
def hash_pipeline(dataset, deterministic):
  # type: (tf.data.Dataset, bool) -> None
  """Utility function for detecting non-determinism in the data pipeline.

  Args:
    dataset: a tf.data.Dataset generated by the input_fn
    deterministic: Does the input_fn expect the dataset to be deterministic.
      (i.e. fixed seed, sloppy=False, etc.)
  """
  if not deterministic:
    tf.logging.warning("Data pipeline is not marked as deterministic. Hash "
                       "values are not expected to be meaningful.")

  batch = dataset.make_one_shot_iterator().get_next()
  md5 = hashlib.md5()
  count = 0
  first_batch_hash = b""
  with tf.Session() as sess:
    while True:
      try:
        result = sess.run(batch)
        if isinstance(result, tuple):
          result = result[0]  # only hash features
      except tf.errors.OutOfRangeError:
        break

      count += 1
      md5.update(memoryview(result[movielens.USER_COLUMN]).tobytes())
      md5.update(memoryview(result[movielens.ITEM_COLUMN]).tobytes())
      if count == 1:
        first_batch_hash = md5.hexdigest()
  overall_hash = md5.hexdigest()
  tf.logging.info("Batch count: {}".format(count))
  tf.logging.info("  [pipeline_hash] First batch hash: {}".format(
      first_batch_hash))
  tf.logging.info("  [pipeline_hash] All batches hash: {}".format(overall_hash))


592
def make_train_input_fn(ncf_dataset):
593
  # type: (typing.Optional[NCFDataset]) -> (typing.Callable, str, int)
594
595
  """Construct training input_fn for the current epoch."""

596
597
598
  if ncf_dataset is None:
    return make_train_synthetic_input_fn()

599
  if not tf.gfile.Exists(ncf_dataset.cache_paths.subproc_alive):
600
601
602
603
    # The generation subprocess must have been alive at some point, because we
    # earlier checked that the subproc_alive file existed.
    raise ValueError("Generation subprocess unexpectedly died. Data will not "
                     "be available; exiting to avoid waiting forever.")
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652

  train_epoch_dir = ncf_dataset.cache_paths.train_epoch_dir
  while not tf.gfile.Exists(train_epoch_dir):
    tf.logging.info("Waiting for {} to exist.".format(train_epoch_dir))
    time.sleep(1)

  train_data_dirs = tf.gfile.ListDirectory(train_epoch_dir)
  while not train_data_dirs:
    tf.logging.info("Waiting for data folder to be created.")
    time.sleep(1)
    train_data_dirs = tf.gfile.ListDirectory(train_epoch_dir)
  train_data_dirs.sort()  # names are zfilled so that
                          # lexicographic sort == numeric sort
  record_dir = os.path.join(train_epoch_dir, train_data_dirs[0])

  ready_file = os.path.join(record_dir, rconst.READY_FILE)
  while not tf.gfile.Exists(ready_file):
    tf.logging.info("Waiting for records in {} to be ready".format(record_dir))
    time.sleep(1)

  with tf.gfile.Open(ready_file, "r") as f:
    epoch_metadata = json.load(f)

  # The data pipeline uses spillover to guarantee static batch sizes. This
  # means that an extra batch will need to be run every few epochs. TPUs
  # require that the number of batches to be run is known at the time that
  # estimator.train() is called, so having the generation pipeline report
  # number of batches guarantees that this count is correct.
  batch_count = epoch_metadata["batch_count"]

  def input_fn(params):
    """Generated input_fn for the given epoch."""
    batch_size = params["batch_size"]

    if epoch_metadata["batch_size"] != batch_size:
      raise ValueError(
          "Records were constructed with batch size {}, but input_fn was given "
          "a batch size of {}. This will result in a deserialization error in "
          "tf.parse_single_example."
          .format(epoch_metadata["batch_size"], batch_size))

    record_files = tf.data.Dataset.list_files(
        os.path.join(record_dir, rconst.TRAIN_RECORD_TEMPLATE.format("*")),
        shuffle=False)

    interleave = tf.contrib.data.parallel_interleave(
        tf.data.TFRecordDataset,
        cycle_length=4,
        block_length=100000,
653
        sloppy=not ncf_dataset.deterministic,
654
655
656
657
658
659
        prefetch_input_elements=4,
    )

    deserialize = make_deserialize(params, batch_size, True)
    dataset = record_files.apply(interleave)
    dataset = dataset.map(deserialize, num_parallel_calls=4)
660
661
662
663
664
665
    dataset = dataset.prefetch(32)

    if params.get("hash_pipeline"):
      hash_pipeline(dataset, ncf_dataset.deterministic)

    return dataset
666
667
668
669

  return input_fn, record_dir, batch_count


670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
def make_train_synthetic_input_fn():
  """Construct training input_fn that uses synthetic data."""
  def input_fn(params):
    """Generated input_fn for the given epoch."""
    batch_size = params["batch_size"]
    num_users = params["num_users"]
    num_items = params["num_items"]

    users = tf.random_uniform([batch_size], dtype=tf.int32, minval=0,
                              maxval=num_users)
    items = tf.random_uniform([batch_size], dtype=tf.int32, minval=0,
                              maxval=num_items)
    labels = tf.random_uniform([batch_size], dtype=tf.int32, minval=0,
                               maxval=2)

    data = {
        movielens.USER_COLUMN: users,
        movielens.ITEM_COLUMN: items,
    }, labels
    dataset = tf.data.Dataset.from_tensors(data).repeat(
        _SYNTHETIC_BATCHES_PER_EPOCH)
    dataset = dataset.prefetch(32)
    return dataset

  return input_fn, None, _SYNTHETIC_BATCHES_PER_EPOCH


697
def make_pred_input_fn(ncf_dataset):
698
  # type: (typing.Optional[NCFDataset]) -> typing.Callable
699
700
  """Construct input_fn for metric evaluation."""

701
702
703
  if ncf_dataset is None:
    return make_synthetic_pred_input_fn()

704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
  def input_fn(params):
    """Input function based on eval batch size."""

    # Estimator has "eval_batch_size" included in the params, but TPUEstimator
    # populates "batch_size" to the appropriate value.
    batch_size = params.get("eval_batch_size") or params["batch_size"]
    record_file = ncf_dataset.cache_paths.eval_record_template.format(
        batch_size)
    while not tf.gfile.Exists(record_file):
      tf.logging.info(
          "Waiting for eval data to be written to {}".format(record_file))
      time.sleep(1)
    dataset = tf.data.TFRecordDataset(record_file)

    deserialize = make_deserialize(params, batch_size, False)
    dataset = dataset.map(deserialize, num_parallel_calls=4)
720
721
722
723
    dataset = dataset.prefetch(16)

    if params.get("hash_pipeline"):
      hash_pipeline(dataset, ncf_dataset.deterministic)
724

725
    return dataset
726
727

  return input_fn
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756


def make_synthetic_pred_input_fn():
  """Construct input_fn for metric evaluation that uses synthetic data."""

  def input_fn(params):
    """Generated input_fn for the given epoch."""
    batch_size = params["eval_batch_size"]
    num_users = params["num_users"]
    num_items = params["num_items"]

    users = tf.random_uniform([batch_size], dtype=tf.int32, minval=0,
                              maxval=num_users)
    items = tf.random_uniform([batch_size], dtype=tf.int32, minval=0,
                              maxval=num_items)
    dupe_mask = tf.cast(tf.random_uniform([batch_size], dtype=tf.int32,
                                          minval=0, maxval=2), tf.bool)

    data = {
        movielens.USER_COLUMN: users,
        movielens.ITEM_COLUMN: items,
        rconst.DUPLICATE_MASK: dupe_mask,
    }
    dataset = tf.data.Dataset.from_tensors(data).repeat(
        _SYNTHETIC_BATCHES_PER_EPOCH)
    dataset = dataset.prefetch(16)
    return dataset

  return input_fn