ncf_keras_benchmark.py 16.4 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
# Copyright 2018 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Executes Keras benchmarks and accuracy tests."""

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import os
import time

from absl import flags
from absl.testing import flagsaver
Hongkun Yu's avatar
Hongkun Yu committed
26
import tensorflow as tf
27
28
29
30

from official.recommendation import ncf_common
from official.recommendation import ncf_keras_main
from official.utils.flags import core
31
from official.utils.testing import benchmark_wrappers
32
33

FLAGS = flags.FLAGS
Toby Boyd's avatar
Toby Boyd committed
34
NCF_DATA_DIR_NAME = 'movielens_data'
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
35
NCF_TF_DATA_1M_BATCH_DIR_NAME = 'gs://tf-perfzero-data/movielens_data/ncf_8gpu_1M_batch'
Toby Boyd's avatar
Toby Boyd committed
36

37

38
class NCFKerasBenchmarkBase(tf.test.Benchmark):
39
40
41
42
43
44
45
46
47
  """Base class for NCF model benchmark."""
  local_flags = None

  def __init__(self,
               output_dir=None,
               default_flags=None,
               **kwargs):
    self.output_dir = output_dir
    self.default_flags = default_flags or {}
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
48
49
    # Run all benchmarks with ml_perf flag.
    self.default_flags['ml_perf'] = True
50
51
52

  def _setup(self):
    """Sets up and resets flags before each test."""
53
    assert tf.version.VERSION.startswith('2.')
54
    tf.compat.v1.logging.set_verbosity(tf.compat.v1.logging.INFO)
55
    if NCFKerasBenchmarkBase.local_flags is None:
Toby Boyd's avatar
Toby Boyd committed
56
      ncf_common.define_ncf_flags()
57
58
59
60
      # Loads flags to get defaults to then override. List cannot be empty.
      flags.FLAGS(['foo'])
      core.set_defaults(**self.default_flags)
      saved_flag_values = flagsaver.save_flag_values()
61
      NCFKerasBenchmarkBase.local_flags = saved_flag_values
62
    else:
63
      flagsaver.restore_flag_values(NCFKerasBenchmarkBase.local_flags)
64

65
  @benchmark_wrappers.enable_runtime_flags
Toby Boyd's avatar
Toby Boyd committed
66
  def _run_and_report_benchmark(self, hr_at_10_min=0, hr_at_10_max=0):
67
68
69
70
    start_time_sec = time.time()
    stats = ncf_keras_main.run_ncf(FLAGS)
    wall_time_sec = time.time() - start_time_sec

Toby Boyd's avatar
Toby Boyd committed
71
72
73
    metrics = []
    metrics.append({'name': 'exp_per_second',
                    'value': stats['avg_exp_per_second']})
74

Toby Boyd's avatar
Toby Boyd committed
75
76
77
78
79
80
81
82
83
84
    if hr_at_10_min > 0:
      metrics.append({'name': 'hr_at_10',
                      'value': stats['eval_hit_rate'],
                      'min_value': hr_at_10_min,
                      'max_value': hr_at_10_max})

      metrics.append({'name': 'train_loss',
                      'value': stats['loss']})

    self.report_benchmark(iters=-1, wall_time=wall_time_sec, metrics=metrics)
85
86


87
class NCFKerasAccuracy(NCFKerasBenchmarkBase):
88
89
90
91
  """Benchmark NCF model using real data."""

  def __init__(self,
               output_dir=None,
Toby Boyd's avatar
Toby Boyd committed
92
               root_data_dir=None,
93
94
               default_flags=None,
               **kwargs):
Hongkun Yu's avatar
Hongkun Yu committed
95
    root_data_dir = root_data_dir if root_data_dir else ''
96
97
98
    default_flags = {}
    default_flags['dataset'] = 'ml-20m'
    default_flags['num_gpus'] = 1
99
    default_flags['train_epochs'] = 10
100
    default_flags['clean'] = True
101
    default_flags['batch_size'] = 99000
102
103
104
105
106
107
108
    default_flags['learning_rate'] = 0.00382059
    default_flags['beta1'] = 0.783529
    default_flags['beta2'] = 0.909003
    default_flags['epsilon'] = 1.45439e-07
    default_flags['layers'] = [256, 256, 128, 64]
    default_flags['num_factors'] = 64
    default_flags['hr_threshold'] = 0.635
109
    default_flags['ml_perf'] = True
110
    default_flags['use_synthetic_data'] = False
Toby Boyd's avatar
Toby Boyd committed
111
    default_flags['data_dir'] = os.path.join(root_data_dir, NCF_DATA_DIR_NAME)
112

113
    super(NCFKerasAccuracy, self).__init__(
114
115
116
117
        output_dir=output_dir,
        default_flags=default_flags,
        **kwargs)

Toby Boyd's avatar
Toby Boyd committed
118
119
  def _run_and_report_benchmark_mlperf_like(self):
    """Run test and report results.
Toby Boyd's avatar
Toby Boyd committed
120

Toby Boyd's avatar
Toby Boyd committed
121
122
123
    Note: MLPerf like tests are not tuned to hit a specific hr@10 value, but
    we want it recorded.
    """
124
    self._run_and_report_benchmark(hr_at_10_min=0.61)
Toby Boyd's avatar
Toby Boyd committed
125

126
  def _run_and_report_benchmark(self, hr_at_10_min=0.630, hr_at_10_max=0.645):
Toby Boyd's avatar
Toby Boyd committed
127
    """Run test and report results.
Toby Boyd's avatar
Toby Boyd committed
128

Toby Boyd's avatar
Toby Boyd committed
129
130
131
132
133
134
135
136
    Note: Target is 0.635, but some runs are below that level. Until we have
    multi-run tests, we have to accept a lower target.

    Args:
      hr_at_10_min: Minimum acceptable hr@10 value.
      hr_at_10_max: Maximum acceptable hr@10 value.
    """
    super(NCFKerasAccuracy, self)._run_and_report_benchmark(
137
138
        hr_at_10_min=hr_at_10_min,
        hr_at_10_max=hr_at_10_max)
139

140
  def benchmark_1_gpu_early_stop(self):
141
    self._setup()
142
    FLAGS.early_stopping = True
143
144
    self._run_and_report_benchmark()

145
  def benchmark_1_gpu_force_v1_path_early_stop(self):
146
147
    self._setup()
    FLAGS.early_stopping = True
148
    FLAGS.force_v2_in_keras_compile = False
149
150
    self._run_and_report_benchmark()

151
152
153
154
155
156
  def benchmark_1_gpu_no_dist_strat_early_stop(self):
    self._setup()
    FLAGS.distribution_strategy = 'off'
    FLAGS.early_stopping = True
    self._run_and_report_benchmark()

157
  def benchmark_1_gpu_no_dist_strat_force_v1_path_early_stop(self):
158
159
160
    self._setup()
    FLAGS.distribution_strategy = 'off'
    FLAGS.early_stopping = True
161
    FLAGS.force_v2_in_keras_compile = False
162
163
    self._run_and_report_benchmark()

164
165
166
167
168
169
170
171
172
173
174
175
176
  def benchmark_1_gpu_no_dist_strat_run_eagerly_early_stop(self):
    self._setup()
    FLAGS.distribution_strategy = 'off'
    FLAGS.early_stopping = True
    FLAGS.run_eagerly = True
    self._run_and_report_benchmark()

  def benchmark_xla_1_gpu_early_stop(self):
    self._setup()
    FLAGS.early_stopping = True
    FLAGS.enable_xla = True
    self._run_and_report_benchmark()

177
  def benchmark_xla_1_gpu_force_v1_path_early_stop(self):
178
179
180
    self._setup()
    FLAGS.early_stopping = True
    FLAGS.enable_xla = True
181
    FLAGS.force_v2_in_keras_compile = False
182
183
    self._run_and_report_benchmark()

184
185
186
187
188
189
  def benchmark_1_gpu_ctl_early_stop(self):
    self._setup()
    FLAGS.keras_use_ctl = True
    FLAGS.early_stopping = True
    self._run_and_report_benchmark()

190
191
192
193
194
195
196
  def benchmark_1_gpu_ctl_run_eagerly_early_stop(self):
    self._setup()
    FLAGS.keras_use_ctl = True
    FLAGS.early_stopping = True
    FLAGS.run_eagerly = True
    self._run_and_report_benchmark()

197
198
199
200
201
202
203
  def benchmark_xla_1_gpu_ctl_early_stop(self):
    self._setup()
    FLAGS.keras_use_ctl = True
    FLAGS.early_stopping = True
    FLAGS.enable_xla = True
    self._run_and_report_benchmark()

204
205
206
207
  def benchmark_2_gpus_early_stop(self):
    self._setup()
    FLAGS.early_stopping = True
    FLAGS.num_gpus = 2
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
208
    FLAGS.eval_batch_size = 160000
209
    self._run_and_report_benchmark()
210

211
  def benchmark_2_gpus_ctl_early_stop(self):
212
    """NCF with custom training loop. Works only in TF 2.0."""
213
214
215
216
    self._setup()
    FLAGS.keras_use_ctl = True
    FLAGS.early_stopping = True
    FLAGS.num_gpus = 2
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
217
    FLAGS.eval_batch_size = 160000
218
219
    self._run_and_report_benchmark()

220
#############################################
221
# Tests below with mlperf in the test name are of two types:
222
223
224
225
226
227
228
#  1) 1 GPU tests are based on MLPerf 0.5 and the TensorFlow pulled submission.
#  2) 8 GPU tests are based on MLPerf 0.5 and use NVIDIA's hyper parameters.
#
# The purpose of both is to get a number to compare to existing results. To do
# this the number of epochs is held constant rather than a race to a given
# accuracy. The accuracy validation is done by the "early_stop" tests.
#############################################
229
230

  def benchmark_1_gpu_mlperf_like(self):
231
    """1 GPU using keras fit/compile."""
232
233
    self._setup()
    FLAGS.train_epochs = 7
Toby Boyd's avatar
Toby Boyd committed
234
    self._run_and_report_benchmark_mlperf_like()
235

236
  def benchmark_1_gpu_no_dist_strat_force_v1_path_mlperf_like(self):
237
238
239
240
    """1 GPU using compile/fit without dist_strat."""
    self._setup()
    FLAGS.train_epochs = 7
    FLAGS.distribution_strategy = 'off'
241
    FLAGS.force_v2_in_keras_compile = False
242
243
    self._run_and_report_benchmark()

244
  def benchmark_1_gpu_no_dist_strat_mlperf_like(self):
245
    """1 GPU using compile/fit without dist_strat."""
246
247
248
    self._setup()
    FLAGS.train_epochs = 7
    FLAGS.distribution_strategy = 'off'
Toby Boyd's avatar
Toby Boyd committed
249
    self._run_and_report_benchmark_mlperf_like()
250
251
252
253
254
255

  def benchmark_1_gpu_no_dist_strat_run_eagerly_mlperf_like(self):
    self._setup()
    FLAGS.train_epochs = 7
    FLAGS.distribution_strategy = 'off'
    FLAGS.run_eagerly = True
Toby Boyd's avatar
Toby Boyd committed
256
    self._run_and_report_benchmark_mlperf_like()
257
258

  def benchmark_xla_1_gpu_mlperf_like(self):
259
    """1 GPU using compile/fit with XLA."""
260
261
    self._setup()
    FLAGS.train_epochs = 7
262
    FLAGS.enable_xla = True
Toby Boyd's avatar
Toby Boyd committed
263
    self._run_and_report_benchmark_mlperf_like()
264

265
266
267
268
269
  def benchmark_1_gpu_ctl_mlperf_like(self):
    """1 GPU using CTL."""
    self._setup()
    FLAGS.keras_use_ctl = True
    FLAGS.train_epochs = 7
Toby Boyd's avatar
Toby Boyd committed
270
    self._run_and_report_benchmark_mlperf_like()
271

Nimit Nigania's avatar
Nimit Nigania committed
272
  def benchmark_1_gpu_ctl_fp16_mlperf_like(self):
Tomasz Grel's avatar
Tomasz Grel committed
273
    """1 GPU using CTL and FP16."""
Nimit Nigania's avatar
Nimit Nigania committed
274
275
276
277
278
279
280
    self._setup()
    FLAGS.keras_use_ctl = True
    FLAGS.train_epochs = 7
    FLAGS.dtype = 'fp16'
    FLAGS.loss_scale = 8192
    self._run_and_report_benchmark_mlperf_like()

Tomasz Grel's avatar
Tomasz Grel committed
281
282
283
284
285
286
287
288
  def benchmark_1_gpu_fp16_mlperf_like(self):
    """1 GPU using FP16."""
    self._setup()
    FLAGS.train_epochs = 7
    FLAGS.dtype = 'fp16'
    FLAGS.loss_scale = 8192
    self._run_and_report_benchmark_mlperf_like()

289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
  def benchmark_1_gpu_ctl_fp16_graph_rewrite_mlperf_like(self):
    """1 GPU using CTL and FP16 graph rewrite."""
    self._setup()
    FLAGS.keras_use_ctl = True
    FLAGS.train_epochs = 7
    FLAGS.dtype = 'fp16'
    FLAGS.fp16_implementation = 'graph_rewrite'
    FLAGS.loss_scale = 8192
    self._run_and_report_benchmark_mlperf_like()

  def benchmark_1_gpu_fp16_graph_rewrite_mlperf_like(self):
    """1 GPU using FP16 graph rewrite."""
    self._setup()
    FLAGS.train_epochs = 7
    FLAGS.dtype = 'fp16'
    FLAGS.fp16_implementation = 'graph_rewrite'
    FLAGS.loss_scale = 8192
    self._run_and_report_benchmark_mlperf_like()

308
309
310
311
312
313
314
315
  def benchmark_1_gpu_ctl_run_eagerly_mlperf_like(self):
    """1 GPU using CTL with eager and distribution strategy."""
    self._setup()
    FLAGS.keras_use_ctl = True
    FLAGS.run_eagerly = True
    FLAGS.train_epochs = 7
    self._run_and_report_benchmark()

316
317
  def benchmark_xla_1_gpu_ctl_mlperf_like(self):
    """1 GPU using CTL with XLA."""
318
319
    self._setup()
    FLAGS.keras_use_ctl = True
320
321
    FLAGS.enable_xla = True
    FLAGS.train_epochs = 7
Toby Boyd's avatar
Toby Boyd committed
322
    self._run_and_report_benchmark_mlperf_like()
323

Tomasz Grel's avatar
Tomasz Grel committed
324
325
326
327
328
329
330
331
332
  def benchmark_xla_1_gpu_fp16_mlperf_like(self):
    """1 GPU using with XLA and FP16."""
    self._setup()
    FLAGS.enable_xla = True
    FLAGS.train_epochs = 7
    FLAGS.dtype = 'fp16'
    FLAGS.loss_scale = 8192
    self._run_and_report_benchmark_mlperf_like()

Nimit Nigania's avatar
Nimit Nigania committed
333
  def benchmark_xla_1_gpu_ctl_fp16_mlperf_like(self):
Tomasz Grel's avatar
Tomasz Grel committed
334
    """1 GPU using CTL with XLA and FP16."""
Nimit Nigania's avatar
Nimit Nigania committed
335
336
337
338
339
340
341
342
    self._setup()
    FLAGS.keras_use_ctl = True
    FLAGS.enable_xla = True
    FLAGS.train_epochs = 7
    FLAGS.dtype = 'fp16'
    FLAGS.loss_scale = 8192
    self._run_and_report_benchmark_mlperf_like()

343
344
345
  def benchmark_8_gpu_mlperf_like(self):
    """8 GPU using keras fit/compile."""
    self._setup()
346
347
348
    FLAGS.num_gpus = 8
    FLAGS.train_epochs = 17
    FLAGS.batch_size = 1048576
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
349
    FLAGS.eval_batch_size = 160000
350
351
352
353
    FLAGS.learning_rate = 0.0045
    FLAGS.beta1 = 0.25
    FLAGS.beta2 = 0.5
    FLAGS.epsilon = 1e-8
Toby Boyd's avatar
Toby Boyd committed
354
    self._run_and_report_benchmark_mlperf_like()
355

356
357
  def benchmark_8_gpu_force_v1_path_mlperf_like(self):
    """8 GPU using keras fit/compile v1 codepath."""
358
359
360
361
    self._setup()
    FLAGS.num_gpus = 8
    FLAGS.train_epochs = 17
    FLAGS.batch_size = 1048576
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
362
    FLAGS.eval_batch_size = 160000
363
364
365
366
    FLAGS.learning_rate = 0.0045
    FLAGS.beta1 = 0.25
    FLAGS.beta2 = 0.5
    FLAGS.epsilon = 1e-8
367
    FLAGS.force_v2_in_keras_compile = False
368
    self._run_and_report_benchmark_mlperf_like()
369

370
371
372
373
374
375
376
  def benchmark_8_gpu_ctl_mlperf_like(self):
    """8 GPU using CTL."""
    self._setup()
    FLAGS.keras_use_ctl = True
    FLAGS.num_gpus = 8
    FLAGS.train_epochs = 17
    FLAGS.batch_size = 1048576
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
377
    FLAGS.eval_batch_size = 160000
378
379
380
381
    FLAGS.learning_rate = 0.0045
    FLAGS.beta1 = 0.25
    FLAGS.beta2 = 0.5
    FLAGS.epsilon = 1e-8
Toby Boyd's avatar
Toby Boyd committed
382
    self._run_and_report_benchmark_mlperf_like()
383

A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
  def benchmark_8_gpu_tf_data_ctl_mlperf_like(self):
    """8 GPU using CTL."""
    self._setup()
    FLAGS.keras_use_ctl = True
    FLAGS.num_gpus = 8
    FLAGS.train_epochs = 17
    FLAGS.batch_size = 1048576
    FLAGS.eval_batch_size = 1048000
    FLAGS.learning_rate = 0.0045
    FLAGS.beta1 = 0.25
    FLAGS.beta2 = 0.5
    FLAGS.epsilon = 1e-8
    FLAGS.train_dataset_path = os.path.join(NCF_TF_DATA_1M_BATCH_DIR_NAME, "training_cycle_*/*")
    FLAGS.eval_dataset_path = os.path.join(NCF_TF_DATA_1M_BATCH_DIR_NAME, "eval_data/*")
    FLAGS.input_meta_data_path = os.path.join(NCF_TF_DATA_1M_BATCH_DIR_NAME, "meta_data.json")
    self._run_and_report_benchmark_mlperf_like()

Tomasz Grel's avatar
Tomasz Grel committed
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
  def benchmark_8_gpu_tf_data_fp16_mlperf_like(self):
    """8 GPU FP16"""
    self._setup()
    FLAGS.num_gpus = 8
    FLAGS.train_epochs = 17
    FLAGS.batch_size = 1048576
    FLAGS.eval_batch_size = 1048000
    FLAGS.learning_rate = 0.0045
    FLAGS.beta1 = 0.25
    FLAGS.beta2 = 0.5
    FLAGS.epsilon = 1e-8
    FLAGS.dtype = 'fp16'
    FLAGS.loss_scale = 8192
    FLAGS.train_dataset_path = os.path.join(NCF_TF_DATA_1M_BATCH_DIR_NAME, "training_cycle_*/*")
    FLAGS.eval_dataset_path = os.path.join(NCF_TF_DATA_1M_BATCH_DIR_NAME, "eval_data/*")
    FLAGS.input_meta_data_path = os.path.join(NCF_TF_DATA_1M_BATCH_DIR_NAME, "meta_data.json")
    self._run_and_report_benchmark_mlperf_like()

A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
419
  def benchmark_8_gpu_tf_data_ctl_fp16_mlperf_like(self):
Tomasz Grel's avatar
Tomasz Grel committed
420
    """8 GPU FP16 using CTL"""
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
    self._setup()
    FLAGS.keras_use_ctl = True
    FLAGS.num_gpus = 8
    FLAGS.train_epochs = 17
    FLAGS.batch_size = 1048576
    FLAGS.eval_batch_size = 1048000
    FLAGS.learning_rate = 0.0045
    FLAGS.beta1 = 0.25
    FLAGS.beta2 = 0.5
    FLAGS.epsilon = 1e-8
    FLAGS.dtype = 'fp16'
    FLAGS.loss_scale = 8192
    FLAGS.train_dataset_path = os.path.join(NCF_TF_DATA_1M_BATCH_DIR_NAME, "training_cycle_*/*")
    FLAGS.eval_dataset_path = os.path.join(NCF_TF_DATA_1M_BATCH_DIR_NAME, "eval_data/*")
    FLAGS.input_meta_data_path = os.path.join(NCF_TF_DATA_1M_BATCH_DIR_NAME, "meta_data.json")
    self._run_and_report_benchmark_mlperf_like()
437

438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
  def benchmark_8_gpu_tf_data_ctl_fp16_graph_rewrite_mlperf_like(self):
    """8 GPU FP16 graph rewrite using CTL."""
    self._setup()
    FLAGS.keras_use_ctl = True
    FLAGS.num_gpus = 8
    FLAGS.train_epochs = 17
    FLAGS.batch_size = 1048576
    FLAGS.eval_batch_size = 1048000
    FLAGS.learning_rate = 0.0045
    FLAGS.beta1 = 0.25
    FLAGS.beta2 = 0.5
    FLAGS.epsilon = 1e-8
    FLAGS.dtype = 'fp16'
    FLAGS.fp16_implementation = 'graph_rewrite'
    FLAGS.loss_scale = 8192
    FLAGS.train_dataset_path = os.path.join(NCF_TF_DATA_1M_BATCH_DIR_NAME,
                                            'training_cycle_*/*')
    FLAGS.eval_dataset_path = os.path.join(NCF_TF_DATA_1M_BATCH_DIR_NAME,
                                           'eval_data/*')
    FLAGS.input_meta_data_path = os.path.join(NCF_TF_DATA_1M_BATCH_DIR_NAME,
                                              'meta_data.json')
    self._run_and_report_benchmark_mlperf_like()


462
class NCFKerasSynth(NCFKerasBenchmarkBase):
463
464
465
466
467
468
469
470
471
472
  """Benchmark NCF model using synthetic data."""

  def __init__(self,
               output_dir=None,
               default_flags=None,
               **kwargs):

    default_flags = {}
    default_flags['dataset'] = 'ml-20m'
    default_flags['num_gpus'] = 1
473
474
    default_flags['train_epochs'] = 8
    default_flags['batch_size'] = 99000
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
475
    default_flags['eval_batch_size'] = 160000
476
477
478
479
480
481
482
483
484
    default_flags['learning_rate'] = 0.00382059
    default_flags['beta1'] = 0.783529
    default_flags['beta2'] = 0.909003
    default_flags['epsilon'] = 1.45439e-07
    default_flags['layers'] = [256, 256, 128, 64]
    default_flags['num_factors'] = 64
    default_flags['hr_threshold'] = 0.635
    default_flags['use_synthetic_data'] = True

485
    super(NCFKerasSynth, self).__init__(
486
487
488
489
490
491
492
        output_dir=output_dir,
        default_flags=default_flags,
        **kwargs)

  def benchmark_1_gpu(self):
    self._setup()
    self._run_and_report_benchmark()
493
494
495
496
497

  def benchmark_2_gpus(self):
    self._setup()
    FLAGS.num_gpus = 2
    self._run_and_report_benchmark()
David Chen's avatar
David Chen committed
498
499
500
501


if __name__ == '__main__':
  tf.test.main()