dataset_factory.py 3.74 KB
Newer Older
David Dohan's avatar
David Dohan committed
1
# Copyright 2017 Google Inc.
2
3
4
5
6
7
8
9
10
11
12
13
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
David Dohan's avatar
David Dohan committed
14

15
16
17
18
19
20
"""A factory-pattern class which returns image/label pairs."""

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

David Dohan's avatar
David Dohan committed
21
# Dependency imports
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
import tensorflow as tf

from slim.datasets import mnist
from domain_adaptation.datasets import mnist_m

slim = tf.contrib.slim


def get_dataset(dataset_name,
                split_name,
                dataset_dir,
                file_pattern=None,
                reader=None):
  """Given a dataset name and a split_name returns a Dataset.

  Args:
    dataset_name: String, the name of the dataset.
    split_name: A train/test split name.
    dataset_dir: The directory where the dataset files are stored.
    file_pattern: The file pattern to use for matching the dataset source files.
    reader: The subclass of tf.ReaderBase. If left as `None`, then the default
      reader defined by each dataset is used.

  Returns:
    A tf-slim `Dataset` class.

  Raises:
    ValueError: if `dataset_name` isn't recognized.
  """
  dataset_name_to_module = {'mnist': mnist, 'mnist_m': mnist_m}
  if dataset_name not in dataset_name_to_module:
    raise ValueError('Name of dataset unknown %s.' % dataset_name)

  return dataset_name_to_module[dataset_name].get_split(split_name, dataset_dir,
                                                        file_pattern, reader)


def provide_batch(dataset_name, split_name, dataset_dir, num_readers,
                  batch_size, num_preprocessing_threads):
  """Provides a batch of images and corresponding labels.

    Args:
    dataset_name: String, the name of the dataset.
    split_name: A train/test split name.
    dataset_dir: The directory where the dataset files are stored.
    num_readers: The number of readers used by DatasetDataProvider.
    batch_size: The size of the batch requested.
    num_preprocessing_threads: The number of preprocessing threads for
      tf.train.batch.
    file_pattern: The file pattern to use for matching the dataset source files.
    reader: The subclass of tf.ReaderBase. If left as `None`, then the default
      reader defined by each dataset is used.

  Returns:
    A batch of
      images: tensor of [batch_size, height, width, channels].
      labels: dictionary of labels.
  """
  dataset = get_dataset(dataset_name, split_name, dataset_dir)
  provider = slim.dataset_data_provider.DatasetDataProvider(
      dataset,
      num_readers=num_readers,
      common_queue_capacity=20 * batch_size,
      common_queue_min=10 * batch_size)
  [image, label] = provider.get(['image', 'label'])

  # Convert images to float32
  image = tf.image.convert_image_dtype(image, tf.float32)
  image -= 0.5
  image *= 2

  # Load the data.
  labels = {}
  images, labels['classes'] = tf.train.batch(
      [image, label],
      batch_size=batch_size,
      num_threads=num_preprocessing_threads,
      capacity=5 * batch_size)
  labels['classes'] = slim.one_hot_encoding(labels['classes'],
                                            dataset.num_classes)

  # Convert mnist to RGB and 32x32 so that it can match mnist_m.
  if dataset_name == 'mnist':
    images = tf.image.grayscale_to_rgb(images)
    images = tf.image.resize_images(images, [32, 32])
  return images, labels