test_utils.py 7.72 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
# Copyright 2017 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================

"""Contains functions which are convenient for unit testing."""
pkulzc's avatar
pkulzc committed
17
18
19
20
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

21
import numpy as np
pkulzc's avatar
pkulzc committed
22
23
from six.moves import range
from six.moves import zip
24
25
26
27
28
29
30
import tensorflow as tf

from object_detection.core import anchor_generator
from object_detection.core import box_coder
from object_detection.core import box_list
from object_detection.core import box_predictor
from object_detection.core import matcher
31
from object_detection.utils import shape_utils
32

33
34
35
# Default size (both width and height) used for testing mask predictions.
DEFAULT_MASK_SIZE = 5

36
37
38
39
40
41
42
43
44
45
46
47
48
49
50

class MockBoxCoder(box_coder.BoxCoder):
  """Simple `difference` BoxCoder."""

  @property
  def code_size(self):
    return 4

  def _encode(self, boxes, anchors):
    return boxes.get() - anchors.get()

  def _decode(self, rel_codes, anchors):
    return box_list.BoxList(rel_codes + anchors.get())


51
52
53
54
55
56
57
58
59
60
61
62
63
class MockMaskHead(object):
  """Simple maskhead that returns all zeros as mask predictions."""

  def __init__(self, num_classes):
    self._num_classes = num_classes

  def predict(self, features):
    batch_size = tf.shape(features)[0]
    return tf.zeros((batch_size, 1, self._num_classes, DEFAULT_MASK_SIZE,
                     DEFAULT_MASK_SIZE),
                    dtype=tf.float32)


64
65
66
class MockBoxPredictor(box_predictor.BoxPredictor):
  """Simple box predictor that ignores inputs and outputs all zeros."""

67
  def __init__(self, is_training, num_classes, add_background_class=True):
68
    super(MockBoxPredictor, self).__init__(is_training, num_classes)
69
    self._add_background_class = add_background_class
70
71

  def _predict(self, image_features, num_predictions_per_location):
72
    image_feature = image_features[0]
73
    combined_feature_shape = shape_utils.combined_static_and_dynamic_shape(
74
        image_feature)
75
76
    batch_size = combined_feature_shape[0]
    num_anchors = (combined_feature_shape[1] * combined_feature_shape[2])
77
    code_size = 4
78
    zero = tf.reduce_sum(0 * image_feature)
79
80
81
    num_class_slots = self.num_classes
    if self._add_background_class:
      num_class_slots = num_class_slots + 1
82
83
84
    box_encodings = zero + tf.zeros(
        (batch_size, num_anchors, 1, code_size), dtype=tf.float32)
    class_predictions_with_background = zero + tf.zeros(
85
        (batch_size, num_anchors, num_class_slots), dtype=tf.float32)
86
87
88
89
90
91
92
    predictions_dict = {
        box_predictor.BOX_ENCODINGS:
            box_encodings,
        box_predictor.CLASS_PREDICTIONS_WITH_BACKGROUND:
            class_predictions_with_background
    }
    return predictions_dict
93
94


95
96
97
class MockKerasBoxPredictor(box_predictor.KerasBoxPredictor):
  """Simple box predictor that ignores inputs and outputs all zeros."""

98
  def __init__(self, is_training, num_classes, add_background_class=True):
99
100
    super(MockKerasBoxPredictor, self).__init__(
        is_training, num_classes, False, False)
101
    self._add_background_class = add_background_class
102
103
104
105
106
107
108
109
110

  def _predict(self, image_features, **kwargs):
    image_feature = image_features[0]
    combined_feature_shape = shape_utils.combined_static_and_dynamic_shape(
        image_feature)
    batch_size = combined_feature_shape[0]
    num_anchors = (combined_feature_shape[1] * combined_feature_shape[2])
    code_size = 4
    zero = tf.reduce_sum(0 * image_feature)
111
112
113
    num_class_slots = self.num_classes
    if self._add_background_class:
      num_class_slots = num_class_slots + 1
114
115
116
    box_encodings = zero + tf.zeros(
        (batch_size, num_anchors, 1, code_size), dtype=tf.float32)
    class_predictions_with_background = zero + tf.zeros(
117
        (batch_size, num_anchors, num_class_slots), dtype=tf.float32)
118
119
120
121
122
123
124
    predictions_dict = {
        box_predictor.BOX_ENCODINGS:
            box_encodings,
        box_predictor.CLASS_PREDICTIONS_WITH_BACKGROUND:
            class_predictions_with_background
    }
    return predictions_dict
125
126


127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
class MockAnchorGenerator(anchor_generator.AnchorGenerator):
  """Mock anchor generator."""

  def name_scope(self):
    return 'MockAnchorGenerator'

  def num_anchors_per_location(self):
    return [1]

  def _generate(self, feature_map_shape_list):
    num_anchors = sum([shape[0] * shape[1] for shape in feature_map_shape_list])
    return box_list.BoxList(tf.zeros((num_anchors, 4), dtype=tf.float32))


class MockMatcher(matcher.Matcher):
  """Simple matcher that matches first anchor to first groundtruth box."""

144
  def _match(self, similarity_matrix, valid_rows):
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
    return tf.constant([0, -1, -1, -1], dtype=tf.int32)


def create_diagonal_gradient_image(height, width, depth):
  """Creates pyramid image. Useful for testing.

  For example, pyramid_image(5, 6, 1) looks like:
  # [[[ 5.  4.  3.  2.  1.  0.]
  #   [ 6.  5.  4.  3.  2.  1.]
  #   [ 7.  6.  5.  4.  3.  2.]
  #   [ 8.  7.  6.  5.  4.  3.]
  #   [ 9.  8.  7.  6.  5.  4.]]]

  Args:
    height: height of image
    width: width of image
    depth: depth of image

  Returns:
    pyramid image
  """
  row = np.arange(height)
  col = np.arange(width)[::-1]
  image_layer = np.expand_dims(row, 1) + col
  image_layer = np.expand_dims(image_layer, 2)

  image = image_layer
  for i in range(1, depth):
    image = np.concatenate((image, image_layer * pow(10, i)), 2)

  return image.astype(np.float32)


def create_random_boxes(num_boxes, max_height, max_width):
  """Creates random bounding boxes of specific maximum height and width.

  Args:
    num_boxes: number of boxes.
    max_height: maximum height of boxes.
    max_width: maximum width of boxes.

  Returns:
    boxes: numpy array of shape [num_boxes, 4]. Each row is in form
        [y_min, x_min, y_max, x_max].
  """

  y_1 = np.random.uniform(size=(1, num_boxes)) * max_height
  y_2 = np.random.uniform(size=(1, num_boxes)) * max_height
  x_1 = np.random.uniform(size=(1, num_boxes)) * max_width
  x_2 = np.random.uniform(size=(1, num_boxes)) * max_width

  boxes = np.zeros(shape=(num_boxes, 4))
  boxes[:, 0] = np.minimum(y_1, y_2)
  boxes[:, 1] = np.minimum(x_1, x_2)
  boxes[:, 2] = np.maximum(y_1, y_2)
  boxes[:, 3] = np.maximum(x_1, x_2)

  return boxes.astype(np.float32)
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235


def first_rows_close_as_set(a, b, k=None, rtol=1e-6, atol=1e-6):
  """Checks if first K entries of two lists are close, up to permutation.

  Inputs to this assert are lists of items which can be compared via
  numpy.allclose(...) and can be sorted.

  Args:
    a: list of items which can be compared via numpy.allclose(...) and are
      sortable.
    b: list of items which can be compared via numpy.allclose(...) and are
      sortable.
    k: a non-negative integer.  If not provided, k is set to be len(a).
    rtol: relative tolerance.
    atol: absolute tolerance.

  Returns:
    boolean, True if input lists a and b have the same length and
    the first k entries of the inputs satisfy numpy.allclose() after
    sorting entries.
  """
  if not isinstance(a, list) or not isinstance(b, list) or len(a) != len(b):
    return False
  if not k:
    k = len(a)
  k = min(k, len(a))
  a_sorted = sorted(a[:k])
  b_sorted = sorted(b[:k])
  return all([
      np.allclose(entry_a, entry_b, rtol, atol)
      for (entry_a, entry_b) in zip(a_sorted, b_sorted)
  ])