run_classifier.py 11.2 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
# Copyright 2019 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""BERT classification finetuning runner in tf2.0."""

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import functools
import json
import math
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
24
import os
25
26
27
28
29
30

from absl import app
from absl import flags
from absl import logging
import tensorflow as tf

31
32
33
34
35
36
37
38
# pylint: disable=g-import-not-at-top,redefined-outer-name,reimported
from official.modeling import model_training_utils
from official.nlp import bert_modeling as modeling
from official.nlp import bert_models
from official.nlp import optimization
from official.nlp.bert import common_flags
from official.nlp.bert import input_pipeline
from official.nlp.bert import model_saving_utils
39
from official.utils.misc import keras_utils
40
from official.utils.misc import tpu_lib
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57

flags.DEFINE_enum(
    'mode', 'train_and_eval', ['train_and_eval', 'export_only'],
    'One of {"train_and_eval", "export_only"}. `train_and_eval`: '
    'trains the model and evaluates in the meantime. '
    '`export_only`: will take the latest checkpoint inside '
    'model_dir and export a `SavedModel`.')
flags.DEFINE_string('train_data_path', None,
                    'Path to training data for BERT classifier.')
flags.DEFINE_string('eval_data_path', None,
                    'Path to evaluation data for BERT classifier.')
# Model training specific flags.
flags.DEFINE_string(
    'input_meta_data_path', None,
    'Path to file that contains meta data about input '
    'to be used for training and evaluation.')
flags.DEFINE_integer('train_batch_size', 32, 'Batch size for training.')
58
flags.DEFINE_integer('eval_batch_size', 32, 'Batch size for evaluation.')
59
60
61
flags.DEFINE_string(
    'hub_module_url', None, 'TF-Hub path/url to Bert module. '
    'If specified, init_checkpoint flag should not be used.')
62
63

common_flags.define_common_bert_flags()
64
65
66
67

FLAGS = flags.FLAGS


68
def get_loss_fn(num_classes, loss_factor=1.0):
69
70
71
72
73
74
75
76
77
78
79
  """Gets the classification loss function."""

  def classification_loss_fn(labels, logits):
    """Classification loss."""
    labels = tf.squeeze(labels)
    log_probs = tf.nn.log_softmax(logits, axis=-1)
    one_hot_labels = tf.one_hot(
        tf.cast(labels, dtype=tf.int32), depth=num_classes, dtype=tf.float32)
    per_example_loss = -tf.reduce_sum(
        tf.cast(one_hot_labels, dtype=tf.float32) * log_probs, axis=-1)
    loss = tf.reduce_mean(per_example_loss)
80
    loss *= loss_factor
81
82
83
84
85
    return loss

  return classification_loss_fn


A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
86
87
88
89
90
91
92
93
94
95
96
97
98
def run_bert_classifier(strategy,
                        bert_config,
                        input_meta_data,
                        model_dir,
                        epochs,
                        steps_per_epoch,
                        steps_per_loop,
                        eval_steps,
                        warmup_steps,
                        initial_lr,
                        init_checkpoint,
                        custom_callbacks=None,
                        run_eagerly=False):
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
  """Run BERT classifier training using low-level API."""
  max_seq_length = input_meta_data['max_seq_length']
  num_classes = input_meta_data['num_labels']

  train_input_fn = functools.partial(
      input_pipeline.create_classifier_dataset,
      FLAGS.train_data_path,
      seq_length=max_seq_length,
      batch_size=FLAGS.train_batch_size)
  eval_input_fn = functools.partial(
      input_pipeline.create_classifier_dataset,
      FLAGS.eval_data_path,
      seq_length=max_seq_length,
      batch_size=FLAGS.eval_batch_size,
      is_training=False,
      drop_remainder=False)

  def _get_classifier_model():
117
    """Gets a classifier model."""
118
    classifier_model, core_model = (
119
120
121
122
123
124
        bert_models.classifier_model(
            bert_config,
            tf.float32,
            num_classes,
            max_seq_length,
            hub_module_url=FLAGS.hub_module_url))
125
126
    classifier_model.optimizer = optimization.create_optimizer(
        initial_lr, steps_per_epoch * epochs, warmup_steps)
127
128
129
130
131
132
133
    if FLAGS.fp16_implementation == 'graph_rewrite':
      # Note: when flags_obj.fp16_implementation == "graph_rewrite", dtype as
      # determined by flags_core.get_tf_dtype(flags_obj) would be 'float32'
      # which will ensure tf.compat.v2.keras.mixed_precision and
      # tf.train.experimental.enable_mixed_precision_graph_rewrite do not double
      # up.
      classifier_model.optimizer = tf.train.experimental.enable_mixed_precision_graph_rewrite(
134
          classifier_model.optimizer)
135
136
    return classifier_model, core_model

137
138
139
140
  loss_fn = get_loss_fn(
      num_classes,
      loss_factor=1.0 /
      strategy.num_replicas_in_sync if FLAGS.scale_loss else 1.0)
141
142
143
144
145
146
147

  # Defines evaluation metrics function, which will create metrics in the
  # correct device and strategy scope.
  def metric_fn():
    return tf.keras.metrics.SparseCategoricalAccuracy(
        'test_accuracy', dtype=tf.float32)

A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
  if FLAGS.use_keras_compile_fit:
    # Start training using Keras compile/fit API.
    logging.info('Training using TF 2.0 Keras compile/fit API with '
                 'distrubuted strategy.')
    return run_keras_compile_fit(
        model_dir,
        strategy,
        _get_classifier_model,
        train_input_fn,
        eval_input_fn,
        loss_fn,
        metric_fn,
        init_checkpoint,
        epochs,
        steps_per_epoch,
        eval_steps,
        custom_callbacks=None)

  # Use user-defined loop to start training.
  logging.info('Training using customized training loop TF 2.0 with '
               'distrubuted strategy.')
169
170
171
172
173
174
  return model_training_utils.run_customized_training_loop(
      strategy=strategy,
      model_fn=_get_classifier_model,
      loss_fn=loss_fn,
      model_dir=model_dir,
      steps_per_epoch=steps_per_epoch,
175
      steps_per_loop=steps_per_loop,
176
177
178
179
180
181
      epochs=epochs,
      train_input_fn=train_input_fn,
      eval_input_fn=eval_input_fn,
      eval_steps=eval_steps,
      init_checkpoint=init_checkpoint,
      metric_fn=metric_fn,
182
183
      custom_callbacks=custom_callbacks,
      run_eagerly=run_eagerly)
184
185


A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
def run_keras_compile_fit(model_dir,
                          strategy,
                          model_fn,
                          train_input_fn,
                          eval_input_fn,
                          loss_fn,
                          metric_fn,
                          init_checkpoint,
                          epochs,
                          steps_per_epoch,
                          eval_steps,
                          custom_callbacks=None):
  """Runs BERT classifier model using Keras compile/fit API."""

  with strategy.scope():
    training_dataset = train_input_fn()
    evaluation_dataset = eval_input_fn()
    bert_model, sub_model = model_fn()
    optimizer = bert_model.optimizer

    if init_checkpoint:
      checkpoint = tf.train.Checkpoint(model=sub_model)
      checkpoint.restore(init_checkpoint).assert_existing_objects_matched()

    bert_model.compile(optimizer=optimizer, loss=loss_fn, metrics=[metric_fn()])

    summary_callback = tf.keras.callbacks.TensorBoard(model_dir)
    checkpoint_dir = os.path.join(model_dir, 'model_checkpoint.{epoch:02d}')
    checkpoint_callback = tf.keras.callbacks.ModelCheckpoint(checkpoint_dir)

    if custom_callbacks is not None:
      custom_callbacks += [summary_callback, checkpoint_callback]
    else:
      custom_callbacks = [summary_callback, checkpoint_callback]

    bert_model.fit(
        x=training_dataset,
        validation_data=evaluation_dataset,
        steps_per_epoch=steps_per_epoch,
        epochs=epochs,
        validation_steps=eval_steps,
        callbacks=custom_callbacks)

    return bert_model


232
233
234
235
236
237
238
239
240
241
242
243
244
245
def export_classifier(model_export_path, input_meta_data):
  """Exports a trained model as a `SavedModel` for inference.

  Args:
    model_export_path: a string specifying the path to the SavedModel directory.
    input_meta_data: dictionary containing meta data about input and model.

  Raises:
    Export path is not specified, got an empty string or None.
  """
  if not model_export_path:
    raise ValueError('Export path is not specified: %s' % model_export_path)
  bert_config = modeling.BertConfig.from_json_file(FLAGS.bert_config_file)

246
247
248
  classifier_model = bert_models.classifier_model(
      bert_config, tf.float32, input_meta_data['num_labels'],
      input_meta_data['max_seq_length'])[0]
249
  model_saving_utils.export_bert_model(
250
      model_export_path, model=classifier_model, checkpoint_dir=FLAGS.model_dir)
251
252
253
254
255
256
257
258
259
260


def run_bert(strategy, input_meta_data):
  """Run BERT training."""
  if FLAGS.mode == 'export_only':
    export_classifier(FLAGS.model_export_path, input_meta_data)
    return

  if FLAGS.mode != 'train_and_eval':
    raise ValueError('Unsupported mode is specified: %s' % FLAGS.mode)
261
262
  # Enables XLA in Session Config. Should not be set for TPU.
  keras_utils.set_config_v2(FLAGS.enable_xla)
263
264
265
266
267
268
269
270
271
272
273

  bert_config = modeling.BertConfig.from_json_file(FLAGS.bert_config_file)
  epochs = FLAGS.num_train_epochs
  train_data_size = input_meta_data['train_data_size']
  steps_per_epoch = int(train_data_size / FLAGS.train_batch_size)
  warmup_steps = int(epochs * train_data_size * 0.1 / FLAGS.train_batch_size)
  eval_steps = int(
      math.ceil(input_meta_data['eval_data_size'] / FLAGS.eval_batch_size))

  if not strategy:
    raise ValueError('Distribution strategy has not been specified.')
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
274
275

  trained_model = run_bert_classifier(
276
277
278
279
280
281
      strategy,
      bert_config,
      input_meta_data,
      FLAGS.model_dir,
      epochs,
      steps_per_epoch,
282
      FLAGS.steps_per_loop,
283
284
285
286
      eval_steps,
      warmup_steps,
      FLAGS.learning_rate,
      FLAGS.init_checkpoint,
287
      run_eagerly=FLAGS.run_eagerly)
288

289
  if FLAGS.model_export_path:
290
291
    model_saving_utils.export_bert_model(
        FLAGS.model_export_path, model=trained_model)
292
293
  return trained_model

294
295
296
297

def main(_):
  # Users should always run this script under TF 2.x
  assert tf.version.VERSION.startswith('2.')
298

299
300
301
302
303
304
305
306
307
308
  with tf.io.gfile.GFile(FLAGS.input_meta_data_path, 'rb') as reader:
    input_meta_data = json.loads(reader.read().decode('utf-8'))

  if not FLAGS.model_dir:
    FLAGS.model_dir = '/tmp/bert20/'

  strategy = None
  if FLAGS.strategy_type == 'mirror':
    strategy = tf.distribute.MirroredStrategy()
  elif FLAGS.strategy_type == 'tpu':
309
    cluster_resolver = tpu_lib.tpu_initialize(FLAGS.tpu)
310
    strategy = tf.distribute.experimental.TPUStrategy(cluster_resolver)
311
312
313
  else:
    raise ValueError('The distribution strategy type is not supported: %s' %
                     FLAGS.strategy_type)
314
315
316
317
318
319
  run_bert(strategy, input_meta_data)


if __name__ == '__main__':
  flags.mark_flag_as_required('bert_config_file')
  flags.mark_flag_as_required('input_meta_data_path')
320
  flags.mark_flag_as_required('model_dir')
321
  app.run(main)