train_test.py 3.14 KB
Newer Older
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
1
# Copyright 2022 The TensorFlow Authors. All Rights Reserved.
Yeqing Li's avatar
Yeqing Li committed
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import json
import os

from absl import flags
from absl.testing import flagsaver
20
from absl.testing import parameterized
Yeqing Li's avatar
Yeqing Li committed
21
22
import tensorflow as tf
from official.projects.yt8m import train as train_lib
23
from official.projects.yt8m.dataloaders import utils
Yeqing Li's avatar
Yeqing Li committed
24
from official.vision.dataloaders import tfexample_utils
Yeqing Li's avatar
Yeqing Li committed
25
26
27
28

FLAGS = flags.FLAGS


29
class TrainTest(parameterized.TestCase, tf.test.TestCase):
Yeqing Li's avatar
Yeqing Li committed
30
31

  def setUp(self):
32
    super().setUp()
Yeqing Li's avatar
Yeqing Li committed
33
34
35
36
37
38
    self._model_dir = os.path.join(self.get_temp_dir(), 'model_dir')
    tf.io.gfile.makedirs(self._model_dir)

    data_dir = os.path.join(self.get_temp_dir(), 'data')
    tf.io.gfile.makedirs(data_dir)
    self._data_path = os.path.join(data_dir, 'data.tfrecord')
39
    examples = [utils.MakeYt8mExample() for _ in range(8)]
Yeqing Li's avatar
Yeqing Li committed
40
41
    tfexample_utils.dump_to_tfrecord(self._data_path, tf_examples=examples)

42
43
44
45
  @parameterized.named_parameters(
      dict(testcase_name='segment', use_segment_level_labels=True),
      dict(testcase_name='video', use_segment_level_labels=False))
  def test_train_and_eval(self, use_segment_level_labels):
Yeqing Li's avatar
Yeqing Li committed
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
    saved_flag_values = flagsaver.save_flag_values()
    train_lib.tfm_flags.define_flags()
    FLAGS.mode = 'train'
    FLAGS.model_dir = self._model_dir
    FLAGS.experiment = 'yt8m_experiment'
    FLAGS.tpu = ''

    params_override = json.dumps({
        'runtime': {
            'distribution_strategy': 'mirrored',
            'mixed_precision_dtype': 'float32',
        },
        'trainer': {
            'train_steps': 1,
            'validation_steps': 1,
        },
        'task': {
            'model': {
                'cluster_size': 16,
                'hidden_size': 16,
                'use_context_gate_cluster_layer': True,
                'agg_model': {
                    'use_input_context_gate': True,
                    'use_output_context_gate': True,
                },
            },
            'train_data': {
                'input_path': self._data_path,
                'global_batch_size': 4,
            },
            'validation_data': {
                'input_path': self._data_path,
78
                'segment_labels': use_segment_level_labels,
Yeqing Li's avatar
Yeqing Li committed
79
80
81
82
83
84
                'global_batch_size': 4,
            }
        }
    })
    FLAGS.params_override = params_override

Yeqing Li's avatar
Yeqing Li committed
85
86
    with train_lib.train.gin.unlock_config():
      train_lib.train.main('unused_args')
Yeqing Li's avatar
Yeqing Li committed
87
88
89
90
91
92
93
94
95
96
97
98

    FLAGS.mode = 'eval'

    with train_lib.train.gin.unlock_config():
      train_lib.train.main('unused_args')

    flagsaver.restore_flag_values(saved_flag_values)


if __name__ == '__main__':
  tf.config.set_soft_device_placement(True)
  tf.test.main()