"vscode:/vscode.git/clone" did not exist on "2ffe0a7363aa0be9f1d7311daf8efe3ec9098338"
model_lib.py 29.7 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
# Copyright 2017 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
15
r"""Constructs model, inputs, and training environment."""
16
17
18
19
20
21

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import functools
22
import os
23
24
25
26
27

import tensorflow as tf

from object_detection import eval_util
from object_detection import inputs
28
from object_detection.builders import graph_rewriter_builder
29
30
31
32
33
34
35
36
37
from object_detection.builders import model_builder
from object_detection.builders import optimizer_builder
from object_detection.core import standard_fields as fields
from object_detection.utils import config_util
from object_detection.utils import label_map_util
from object_detection.utils import shape_utils
from object_detection.utils import variables_helper
from object_detection.utils import visualization_utils as vis_utils

38
39
40
41
42
43
44
45
46
47
48
49
50
51
# A map of names to methods that help build the model.
MODEL_BUILD_UTIL_MAP = {
    'get_configs_from_pipeline_file':
        config_util.get_configs_from_pipeline_file,
    'create_pipeline_proto_from_configs':
        config_util.create_pipeline_proto_from_configs,
    'merge_external_params_with_configs':
        config_util.merge_external_params_with_configs,
    'create_train_input_fn': inputs.create_train_input_fn,
    'create_eval_input_fn': inputs.create_eval_input_fn,
    'create_predict_input_fn': inputs.create_predict_input_fn,
}


52
53
def _prepare_groundtruth_for_eval(detection_model, class_agnostic):
  """Extracts groundtruth data from detection_model and prepares it for eval.
54
55
56
57
58
59
60
61
62
63
64
65
66

  Args:
    detection_model: A `DetectionModel` object.
    class_agnostic: Whether the detections are class_agnostic.

  Returns:
    A tuple of:
    groundtruth: Dictionary with the following fields:
      'groundtruth_boxes': [num_boxes, 4] float32 tensor of boxes, in
        normalized coordinates.
      'groundtruth_classes': [num_boxes] int64 tensor of 1-indexed classes.
      'groundtruth_masks': 3D float32 tensor of instance masks (if provided in
        groundtruth)
67
68
      'groundtruth_is_crowd': [num_boxes] bool tensor indicating is_crowd
        annotations (if provided in groundtruth).
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
    class_agnostic: Boolean indicating whether detections are class agnostic.
  """
  input_data_fields = fields.InputDataFields()
  groundtruth_boxes = detection_model.groundtruth_lists(
      fields.BoxListFields.boxes)[0]
  # For class-agnostic models, groundtruth one-hot encodings collapse to all
  # ones.
  if class_agnostic:
    groundtruth_boxes_shape = tf.shape(groundtruth_boxes)
    groundtruth_classes_one_hot = tf.ones([groundtruth_boxes_shape[0], 1])
  else:
    groundtruth_classes_one_hot = detection_model.groundtruth_lists(
        fields.BoxListFields.classes)[0]
  label_id_offset = 1  # Applying label id offset (b/63711816)
  groundtruth_classes = (
      tf.argmax(groundtruth_classes_one_hot, axis=1) + label_id_offset)
  groundtruth = {
      input_data_fields.groundtruth_boxes: groundtruth_boxes,
      input_data_fields.groundtruth_classes: groundtruth_classes
  }
  if detection_model.groundtruth_has_field(fields.BoxListFields.masks):
    groundtruth[input_data_fields.groundtruth_instance_masks] = (
        detection_model.groundtruth_lists(fields.BoxListFields.masks)[0])
92
93
94
  if detection_model.groundtruth_has_field(fields.BoxListFields.is_crowd):
    groundtruth[input_data_fields.groundtruth_is_crowd] = (
        detection_model.groundtruth_lists(fields.BoxListFields.is_crowd)[0])
95
96
97
98
99
100
101
  return groundtruth


def unstack_batch(tensor_dict, unpad_groundtruth_tensors=True):
  """Unstacks all tensors in `tensor_dict` along 0th dimension.

  Unstacks tensor from the tensor dict along 0th dimension and returns a
102
  tensor_dict containing values that are lists of unstacked, unpadded tensors.
103
104
105
106
107
108

  Tensors in the `tensor_dict` are expected to be of one of the three shapes:
  1. [batch_size]
  2. [batch_size, height, width, channels]
  3. [batch_size, num_boxes, d1, d2, ... dn]

109
110
  When unpad_groundtruth_tensors is set to true, unstacked tensors of form 3
  above are sliced along the `num_boxes` dimension using the value in tensor
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
  field.InputDataFields.num_groundtruth_boxes.

  Note that this function has a static list of input data fields and has to be
  kept in sync with the InputDataFields defined in core/standard_fields.py

  Args:
    tensor_dict: A dictionary of batched groundtruth tensors.
    unpad_groundtruth_tensors: Whether to remove padding along `num_boxes`
      dimension of the groundtruth tensors.

  Returns:
    A dictionary where the keys are from fields.InputDataFields and values are
    a list of unstacked (optionally unpadded) tensors.

  Raises:
    ValueError: If unpad_tensors is True and `tensor_dict` does not contain
      `num_groundtruth_boxes` tensor.
  """
  unbatched_tensor_dict = {key: tf.unstack(tensor)
                           for key, tensor in tensor_dict.items()}
  if unpad_groundtruth_tensors:
    if (fields.InputDataFields.num_groundtruth_boxes not in
        unbatched_tensor_dict):
      raise ValueError('`num_groundtruth_boxes` not found in tensor_dict. '
                       'Keys available: {}'.format(
                           unbatched_tensor_dict.keys()))
    unbatched_unpadded_tensor_dict = {}
    unpad_keys = set([
        # List of input data fields that are padded along the num_boxes
        # dimension. This list has to be kept in sync with InputDataFields in
        # standard_fields.py.
        fields.InputDataFields.groundtruth_instance_masks,
        fields.InputDataFields.groundtruth_classes,
        fields.InputDataFields.groundtruth_boxes,
        fields.InputDataFields.groundtruth_keypoints,
        fields.InputDataFields.groundtruth_group_of,
        fields.InputDataFields.groundtruth_difficult,
        fields.InputDataFields.groundtruth_is_crowd,
        fields.InputDataFields.groundtruth_area,
        fields.InputDataFields.groundtruth_weights
    ]).intersection(set(unbatched_tensor_dict.keys()))

    for key in unpad_keys:
      unpadded_tensor_list = []
      for num_gt, padded_tensor in zip(
          unbatched_tensor_dict[fields.InputDataFields.num_groundtruth_boxes],
          unbatched_tensor_dict[key]):
        tensor_shape = shape_utils.combined_static_and_dynamic_shape(
            padded_tensor)
        slice_begin = tf.zeros([len(tensor_shape)], dtype=tf.int32)
        slice_size = tf.stack(
            [num_gt] + [-1 if dim is None else dim for dim in tensor_shape[1:]])
        unpadded_tensor = tf.slice(padded_tensor, slice_begin, slice_size)
        unpadded_tensor_list.append(unpadded_tensor)
      unbatched_unpadded_tensor_dict[key] = unpadded_tensor_list
    unbatched_tensor_dict.update(unbatched_unpadded_tensor_dict)

  return unbatched_tensor_dict


def create_model_fn(detection_model_fn, configs, hparams, use_tpu=False):
  """Creates a model function for `Estimator`.

  Args:
    detection_model_fn: Function that returns a `DetectionModel` instance.
    configs: Dictionary of pipeline config objects.
    hparams: `HParams` object.
    use_tpu: Boolean indicating whether model should be constructed for
        use on TPU.

  Returns:
    `model_fn` for `Estimator`.
  """
  train_config = configs['train_config']
  eval_input_config = configs['eval_input_config']
186
  eval_config = configs['eval_config']
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213

  def model_fn(features, labels, mode, params=None):
    """Constructs the object detection model.

    Args:
      features: Dictionary of feature tensors, returned from `input_fn`.
      labels: Dictionary of groundtruth tensors if mode is TRAIN or EVAL,
        otherwise None.
      mode: Mode key from tf.estimator.ModeKeys.
      params: Parameter dictionary passed from the estimator.

    Returns:
      An `EstimatorSpec` that encapsulates the model and its serving
        configurations.
    """
    params = params or {}
    total_loss, train_op, detections, export_outputs = None, None, None, None
    is_training = mode == tf.estimator.ModeKeys.TRAIN
    detection_model = detection_model_fn(is_training=is_training,
                                         add_summaries=(not use_tpu))
    scaffold_fn = None

    if mode == tf.estimator.ModeKeys.TRAIN:
      labels = unstack_batch(
          labels,
          unpad_groundtruth_tensors=train_config.unpad_groundtruth_tensors)
    elif mode == tf.estimator.ModeKeys.EVAL:
214
215
216
217
218
219
220
221
      # For evaling on train data, it is necessary to check whether groundtruth
      # must be unpadded.
      boxes_shape = (
          labels[fields.InputDataFields.groundtruth_boxes].get_shape()
          .as_list())
      unpad_groundtruth_tensors = True if boxes_shape[1] is not None else False
      labels = unstack_batch(
          labels, unpad_groundtruth_tensors=unpad_groundtruth_tensors)
222
223
224
225
226
227
228
229
230
231
232

    if mode in (tf.estimator.ModeKeys.TRAIN, tf.estimator.ModeKeys.EVAL):
      gt_boxes_list = labels[fields.InputDataFields.groundtruth_boxes]
      gt_classes_list = labels[fields.InputDataFields.groundtruth_classes]
      gt_masks_list = None
      if fields.InputDataFields.groundtruth_instance_masks in labels:
        gt_masks_list = labels[
            fields.InputDataFields.groundtruth_instance_masks]
      gt_keypoints_list = None
      if fields.InputDataFields.groundtruth_keypoints in labels:
        gt_keypoints_list = labels[fields.InputDataFields.groundtruth_keypoints]
233
234
      if fields.InputDataFields.groundtruth_is_crowd in labels:
        gt_is_crowd_list = labels[fields.InputDataFields.groundtruth_is_crowd]
235
236
237
238
      detection_model.provide_groundtruth(
          groundtruth_boxes_list=gt_boxes_list,
          groundtruth_classes_list=gt_classes_list,
          groundtruth_masks_list=gt_masks_list,
239
240
          groundtruth_keypoints_list=gt_keypoints_list,
          groundtruth_weights_list=labels[
241
242
              fields.InputDataFields.groundtruth_weights],
          groundtruth_is_crowd_list=gt_is_crowd_list)
243
244
245
246

    preprocessed_images = features[fields.InputDataFields.image]
    prediction_dict = detection_model.predict(
        preprocessed_images, features[fields.InputDataFields.true_image_shape])
247
248
249
    if mode in (tf.estimator.ModeKeys.EVAL, tf.estimator.ModeKeys.PREDICT):
      detections = detection_model.postprocess(
          prediction_dict, features[fields.InputDataFields.true_image_shape])
250
251
252

    if mode == tf.estimator.ModeKeys.TRAIN:
      if train_config.fine_tune_checkpoint and hparams.load_pretrained:
253
254
255
256
257
258
259
260
        if not train_config.fine_tune_checkpoint_type:
          # train_config.from_detection_checkpoint field is deprecated. For
          # backward compatibility, set train_config.fine_tune_checkpoint_type
          # based on train_config.from_detection_checkpoint.
          if train_config.from_detection_checkpoint:
            train_config.fine_tune_checkpoint_type = 'detection'
          else:
            train_config.fine_tune_checkpoint_type = 'classification'
261
        asg_map = detection_model.restore_map(
262
            fine_tune_checkpoint_type=train_config.fine_tune_checkpoint_type,
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
            load_all_detection_checkpoint_vars=(
                train_config.load_all_detection_checkpoint_vars))
        available_var_map = (
            variables_helper.get_variables_available_in_checkpoint(
                asg_map, train_config.fine_tune_checkpoint,
                include_global_step=False))
        if use_tpu:
          def tpu_scaffold():
            tf.train.init_from_checkpoint(train_config.fine_tune_checkpoint,
                                          available_var_map)
            return tf.train.Scaffold()
          scaffold_fn = tpu_scaffold
        else:
          tf.train.init_from_checkpoint(train_config.fine_tune_checkpoint,
                                        available_var_map)

    if mode in (tf.estimator.ModeKeys.TRAIN, tf.estimator.ModeKeys.EVAL):
      losses_dict = detection_model.loss(
          prediction_dict, features[fields.InputDataFields.true_image_shape])
      losses = [loss_tensor for loss_tensor in losses_dict.itervalues()]
283
284
285
286
287
288
289
      if train_config.add_regularization_loss:
        regularization_losses = tf.get_collection(
            tf.GraphKeys.REGULARIZATION_LOSSES)
        if regularization_losses:
          regularization_loss = tf.add_n(regularization_losses,
                                         name='regularization_loss')
          losses.append(regularization_loss)
290
          losses_dict['Loss/regularization_loss'] = regularization_loss
291
      total_loss = tf.add_n(losses, name='total_loss')
292
      losses_dict['Loss/total_loss'] = total_loss
293

294
295
296
297
298
      if 'graph_rewriter_config' in configs:
        graph_rewriter_fn = graph_rewriter_builder.build(
            configs['graph_rewriter_config'], is_training=is_training)
        graph_rewriter_fn()

299
300
      # TODO(rathodv): Stop creating optimizer summary vars in EVAL mode once we
      # can write learning rate summaries on TPU without host calls.
301
302
303
304
      global_step = tf.train.get_or_create_global_step()
      training_optimizer, optimizer_summary_vars = optimizer_builder.build(
          train_config.optimizer)

305
    if mode == tf.estimator.ModeKeys.TRAIN:
306
      if use_tpu:
307
        training_optimizer = tf.contrib.tpu.CrossShardOptimizer(
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
            training_optimizer)

      # Optionally freeze some layers by setting their gradients to be zero.
      trainable_variables = None
      if train_config.freeze_variables:
        trainable_variables = tf.contrib.framework.filter_variables(
            tf.trainable_variables(),
            exclude_patterns=train_config.freeze_variables)

      clip_gradients_value = None
      if train_config.gradient_clipping_by_norm > 0:
        clip_gradients_value = train_config.gradient_clipping_by_norm

      if not use_tpu:
        for var in optimizer_summary_vars:
          tf.summary.scalar(var.op.name, var)
      summaries = [] if use_tpu else None
      train_op = tf.contrib.layers.optimize_loss(
          loss=total_loss,
          global_step=global_step,
          learning_rate=None,
          clip_gradients=clip_gradients_value,
          optimizer=training_optimizer,
          variables=trainable_variables,
          summaries=summaries,
          name='')  # Preventing scope prefix on all variables.

    if mode == tf.estimator.ModeKeys.PREDICT:
      export_outputs = {
          tf.saved_model.signature_constants.PREDICT_METHOD_NAME:
              tf.estimator.export.PredictOutput(detections)
      }

    eval_metric_ops = None
342
    scaffold = None
343
    if mode == tf.estimator.ModeKeys.EVAL:
344
345
      class_agnostic = (fields.DetectionResultFields.detection_classes
                        not in detections)
346
347
      groundtruth = _prepare_groundtruth_for_eval(
          detection_model, class_agnostic)
348
      use_original_images = fields.InputDataFields.original_image in features
349
      eval_images = (
350
351
          features[fields.InputDataFields.original_image] if use_original_images
          else features[fields.InputDataFields.image])
352
      eval_dict = eval_util.result_dict_for_single_example(
353
          eval_images[0:1],
354
355
356
357
          features[inputs.HASH_KEY][0],
          detections,
          groundtruth,
          class_agnostic=class_agnostic,
358
          scale_to_absolute=True)
359
360
361
362
363
364

      if class_agnostic:
        category_index = label_map_util.create_class_agnostic_category_index()
      else:
        category_index = label_map_util.create_category_index_from_labelmap(
            eval_input_config.label_map_path)
365
      img_summary = None
366
      if not use_tpu and use_original_images:
367
368
369
        detection_and_groundtruth = (
            vis_utils.draw_side_by_side_evaluation_image(
                eval_dict, category_index, max_boxes_to_draw=20,
370
371
                min_score_thresh=0.2,
                use_normalized_coordinates=False))
372
373
374
        img_summary = tf.summary.image('Detections_Left_Groundtruth_Right',
                                       detection_and_groundtruth)

375
376
377
378
379
      # Eval metrics on a single example.
      eval_metrics = eval_config.metrics_set
      if not eval_metrics:
        eval_metrics = ['coco_detection_metrics']
      eval_metric_ops = eval_util.get_eval_metric_ops_for_evaluators(
380
381
382
383
          eval_metrics,
          category_index.values(),
          eval_dict,
          include_metrics_per_category=eval_config.include_metrics_per_category)
384
385
386
387
388
389
390
391
      for loss_key, loss_tensor in iter(losses_dict.items()):
        eval_metric_ops[loss_key] = tf.metrics.mean(loss_tensor)
      for var in optimizer_summary_vars:
        eval_metric_ops[var.op.name] = (var, tf.no_op())
      if img_summary is not None:
        eval_metric_ops['Detections_Left_Groundtruth_Right'] = (
            img_summary, tf.no_op())
      eval_metric_ops = {str(k): v for k, v in eval_metric_ops.iteritems()}
392

393
394
395
396
397
398
399
400
401
402
      if eval_config.use_moving_averages:
        variable_averages = tf.train.ExponentialMovingAverage(0.0)
        variables_to_restore = variable_averages.variables_to_restore()
        keep_checkpoint_every_n_hours = (
            train_config.keep_checkpoint_every_n_hours)
        saver = tf.train.Saver(
            variables_to_restore,
            keep_checkpoint_every_n_hours=keep_checkpoint_every_n_hours)
        scaffold = tf.train.Scaffold(saver=saver)

403
404
    # EVAL executes on CPU, so use regular non-TPU EstimatorSpec.
    if use_tpu and mode != tf.estimator.ModeKeys.EVAL:
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
      return tf.contrib.tpu.TPUEstimatorSpec(
          mode=mode,
          scaffold_fn=scaffold_fn,
          predictions=detections,
          loss=total_loss,
          train_op=train_op,
          eval_metrics=eval_metric_ops,
          export_outputs=export_outputs)
    else:
      return tf.estimator.EstimatorSpec(
          mode=mode,
          predictions=detections,
          loss=total_loss,
          train_op=train_op,
          eval_metric_ops=eval_metric_ops,
420
421
          export_outputs=export_outputs,
          scaffold=scaffold)
422
423
424
425

  return model_fn


426
427
428
429
430
431
432
433
434
435
436
437
def create_estimator_and_inputs(run_config,
                                hparams,
                                pipeline_config_path,
                                train_steps=None,
                                eval_steps=None,
                                model_fn_creator=create_model_fn,
                                use_tpu_estimator=False,
                                use_tpu=False,
                                num_shards=1,
                                params=None,
                                **kwargs):
  """Creates `Estimator`, input functions, and steps.
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456

  Args:
    run_config: A `RunConfig`.
    hparams: A `HParams`.
    pipeline_config_path: A path to a pipeline config file.
    train_steps: Number of training steps. If None, the number of training steps
      is set from the `TrainConfig` proto.
    eval_steps: Number of evaluation steps per evaluation cycle. If None, the
      number of evaluation steps is set from the `EvalConfig` proto.
    model_fn_creator: A function that creates a `model_fn` for `Estimator`.
      Follows the signature:

      * Args:
        * `detection_model_fn`: Function that returns `DetectionModel` instance.
        * `configs`: Dictionary of pipeline config objects.
        * `hparams`: `HParams` object.
      * Returns:
        `model_fn` for `Estimator`.

457
458
459
460
461
462
463
464
    use_tpu_estimator: Whether a `TPUEstimator` should be returned. If False,
      an `Estimator` will be returned.
    use_tpu: Boolean, whether training and evaluation should run on TPU. Only
      used if `use_tpu_estimator` is True.
    num_shards: Number of shards (TPU cores). Only used if `use_tpu_estimator`
      is True.
    params: Parameter dictionary passed from the estimator. Only used if
      `use_tpu_estimator` is True.
465
466
467
    **kwargs: Additional keyword arguments for configuration override.

  Returns:
468
469
470
471
    A dictionary with the following fields:
    'estimator': An `Estimator` or `TPUEstimator`.
    'train_input_fn': A training input function.
    'eval_input_fn': An evaluation input function.
472
    'eval_on_train_input_fn': An evaluation-on-train input function.
473
474
475
476
477
    'predict_input_fn': A prediction input function.
    'train_steps': Number of training steps. Either directly from input or from
      configuration.
    'eval_steps': Number of evaluation steps. Either directly from input or from
      configuration.
478
  """
479
480
481
482
  get_configs_from_pipeline_file = MODEL_BUILD_UTIL_MAP[
      'get_configs_from_pipeline_file']
  merge_external_params_with_configs = MODEL_BUILD_UTIL_MAP[
      'merge_external_params_with_configs']
483
484
  create_pipeline_proto_from_configs = MODEL_BUILD_UTIL_MAP[
      'create_pipeline_proto_from_configs']
485
486
487
488
489
490
  create_train_input_fn = MODEL_BUILD_UTIL_MAP['create_train_input_fn']
  create_eval_input_fn = MODEL_BUILD_UTIL_MAP['create_eval_input_fn']
  create_predict_input_fn = MODEL_BUILD_UTIL_MAP['create_predict_input_fn']

  configs = get_configs_from_pipeline_file(pipeline_config_path)
  configs = merge_external_params_with_configs(
491
492
493
494
      configs,
      hparams,
      train_steps=train_steps,
      eval_steps=eval_steps,
495
      retain_original_images_in_eval=False if use_tpu else True,
496
497
498
499
500
501
502
      **kwargs)
  model_config = configs['model']
  train_config = configs['train_config']
  train_input_config = configs['train_input_config']
  eval_config = configs['eval_config']
  eval_input_config = configs['eval_input_config']

503
504
505
  # update train_steps from config but only when non-zero value is provided
  if train_steps is None and train_config.num_steps != 0:
    train_steps = train_config.num_steps
506

507
508
509
  # update eval_steps from config but only when non-zero value is provided
  if eval_steps is None and eval_config.num_examples != 0:
    eval_steps = eval_config.num_examples
510
511
512
513

  detection_model_fn = functools.partial(
      model_builder.build, model_config=model_config)

514
  # Create the input functions for TRAIN/EVAL/PREDICT.
515
  train_input_fn = create_train_input_fn(
516
517
518
      train_config=train_config,
      train_input_config=train_input_config,
      model_config=model_config)
519
  eval_input_fn = create_eval_input_fn(
520
521
522
      eval_config=eval_config,
      eval_input_config=eval_input_config,
      model_config=model_config)
523
524
525
526
  eval_on_train_input_fn = create_eval_input_fn(
      eval_config=eval_config,
      eval_input_config=train_input_config,
      model_config=model_config)
527
528
  predict_input_fn = create_predict_input_fn(
      model_config=model_config, predict_input_config=eval_input_config)
529

530
  tf.logging.info('create_estimator_and_inputs: use_tpu %s', use_tpu)
531
532
  model_fn = model_fn_creator(detection_model_fn, configs, hparams, use_tpu)
  if use_tpu_estimator:
533
    estimator = tf.contrib.tpu.TPUEstimator(
534
535
536
537
538
539
        model_fn=model_fn,
        train_batch_size=train_config.batch_size,
        # For each core, only batch size 1 is supported for eval.
        eval_batch_size=num_shards * 1 if use_tpu else 1,
        use_tpu=use_tpu,
        config=run_config,
540
        # TODO(lzc): Remove conditional after CMLE moves to TF 1.9
541
542
543
        params=params if params else {})
  else:
    estimator = tf.estimator.Estimator(model_fn=model_fn, config=run_config)
544

545
  # Write the as-run pipeline config to disk.
546
  if run_config.is_chief:
547
    pipeline_config_final = create_pipeline_proto_from_configs(
548
        configs)
549
    config_util.save_pipeline_config(pipeline_config_final, estimator.model_dir)
550

551
  return dict(
552
553
554
      estimator=estimator,
      train_input_fn=train_input_fn,
      eval_input_fn=eval_input_fn,
555
      eval_on_train_input_fn=eval_on_train_input_fn,
556
      predict_input_fn=predict_input_fn,
557
      train_steps=train_steps,
558
559
560
561
562
      eval_steps=eval_steps)


def create_train_and_eval_specs(train_input_fn,
                                eval_input_fn,
563
                                eval_on_train_input_fn,
564
565
566
567
                                predict_input_fn,
                                train_steps,
                                eval_steps,
                                eval_on_train_data=False,
568
                                eval_on_train_steps=None,
569
570
571
572
573
574
575
                                final_exporter_name='Servo',
                                eval_spec_name='eval'):
  """Creates a `TrainSpec` and `EvalSpec`s.

  Args:
    train_input_fn: Function that produces features and labels on train data.
    eval_input_fn: Function that produces features and labels on eval data.
576
577
    eval_on_train_input_fn: Function that produces features and labels for
      evaluation on train data.
578
579
580
581
582
    predict_input_fn: Function that produces features for inference.
    train_steps: Number of training steps.
    eval_steps: Number of eval steps.
    eval_on_train_data: Whether to evaluate model on training data. Default is
      False.
583
584
    eval_on_train_steps: Number of eval steps for training data. If not given,
      uses eval_steps.
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
    final_exporter_name: String name given to `FinalExporter`.
    eval_spec_name: String name given to main `EvalSpec`.

  Returns:
    Tuple of `TrainSpec` and list of `EvalSpecs`. The first `EvalSpec` is for
    evaluation data. If `eval_on_train_data` is True, the second `EvalSpec` in
    the list will correspond to training data.
  """

  exporter = tf.estimator.FinalExporter(
      name=final_exporter_name, serving_input_receiver_fn=predict_input_fn)

  train_spec = tf.estimator.TrainSpec(
      input_fn=train_input_fn, max_steps=train_steps)

  eval_specs = [
      tf.estimator.EvalSpec(
          name=eval_spec_name,
          input_fn=eval_input_fn,
          steps=eval_steps,
          exporters=exporter)
  ]

  if eval_on_train_data:
    eval_specs.append(
        tf.estimator.EvalSpec(
611
            name='eval_on_train', input_fn=eval_on_train_input_fn,
612
            steps=eval_on_train_steps or eval_steps))
613
614

  return train_spec, eval_specs
615
616


617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
def continuous_eval(estimator, model_dir, input_fn, eval_steps, train_steps,
                    name):
  """Perform continuous evaluation on checkpoints written to a model directory.

  Args:
    estimator: Estimator object to use for evaluation.
    model_dir: Model directory to read checkpoints for continuous evaluation.
    input_fn: Input function to use for evaluation.
    eval_steps: Number of steps to run during each evaluation.
    train_steps: Number of training steps. This is used to infer the last
      checkpoint and stop evaluation loop.
    name: Namescope for eval summary.
  """
  def terminate_eval():
    tf.logging.info('Terminating eval after 180 seconds of no checkpoints')
    return True

  for ckpt in tf.contrib.training.checkpoints_iterator(
      model_dir, min_interval_secs=180, timeout=None,
      timeout_fn=terminate_eval):

    tf.logging.info('Starting Evaluation.')
    try:
      eval_results = estimator.evaluate(
          input_fn=input_fn,
          steps=eval_steps,
          checkpoint_path=ckpt,
          name=name)
      tf.logging.info('Eval results: %s' % eval_results)

      # Terminate eval job when final checkpoint is reached
      current_step = int(os.path.basename(ckpt).split('-')[1])
      if current_step >= train_steps:
        tf.logging.info(
            'Evaluation finished after training step %d' % current_step)
        break

    except tf.errors.NotFoundError:
      tf.logging.info(
          'Checkpoint %s no longer exists, skipping checkpoint' % ckpt)


659
660
661
662
663
664
665
666
def populate_experiment(run_config,
                        hparams,
                        pipeline_config_path,
                        train_steps=None,
                        eval_steps=None,
                        model_fn_creator=create_model_fn,
                        **kwargs):
  """Populates an `Experiment` object.
667

668
669
  EXPERIMENT CLASS IS DEPRECATED. Please switch to
  tf.estimator.train_and_evaluate. As an example, see model_main.py.
670

671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
  Args:
    run_config: A `RunConfig`.
    hparams: A `HParams`.
    pipeline_config_path: A path to a pipeline config file.
    train_steps: Number of training steps. If None, the number of training steps
      is set from the `TrainConfig` proto.
    eval_steps: Number of evaluation steps per evaluation cycle. If None, the
      number of evaluation steps is set from the `EvalConfig` proto.
    model_fn_creator: A function that creates a `model_fn` for `Estimator`.
      Follows the signature:

      * Args:
        * `detection_model_fn`: Function that returns `DetectionModel` instance.
        * `configs`: Dictionary of pipeline config objects.
        * `hparams`: `HParams` object.
      * Returns:
        `model_fn` for `Estimator`.

    **kwargs: Additional keyword arguments for configuration override.

  Returns:
    An `Experiment` that defines all aspects of training, evaluation, and
    export.
  """
  tf.logging.warning('Experiment is being deprecated. Please use '
                     'tf.estimator.train_and_evaluate(). See model_main.py for '
                     'an example.')
  train_and_eval_dict = create_estimator_and_inputs(
      run_config,
      hparams,
      pipeline_config_path,
      train_steps=train_steps,
      eval_steps=eval_steps,
      model_fn_creator=model_fn_creator,
      **kwargs)
  estimator = train_and_eval_dict['estimator']
  train_input_fn = train_and_eval_dict['train_input_fn']
  eval_input_fn = train_and_eval_dict['eval_input_fn']
  predict_input_fn = train_and_eval_dict['predict_input_fn']
  train_steps = train_and_eval_dict['train_steps']
  eval_steps = train_and_eval_dict['eval_steps']

  export_strategies = [
      tf.contrib.learn.utils.saved_model_export_utils.make_export_strategy(
          serving_input_fn=predict_input_fn)
  ]

  return tf.contrib.learn.Experiment(
      estimator=estimator,
      train_input_fn=train_input_fn,
      eval_input_fn=eval_input_fn,
      train_steps=train_steps,
      eval_steps=eval_steps,
      export_strategies=export_strategies,
      eval_delay_secs=120,)