model_builder.py 18 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
# Copyright 2017 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================

"""A function to build a DetectionModel from configuration."""
from object_detection.builders import anchor_generator_builder
from object_detection.builders import box_coder_builder
from object_detection.builders import box_predictor_builder
from object_detection.builders import hyperparams_builder
from object_detection.builders import image_resizer_builder
from object_detection.builders import losses_builder
from object_detection.builders import matcher_builder
from object_detection.builders import post_processing_builder
from object_detection.builders import region_similarity_calculator_builder as sim_calc
from object_detection.core import box_predictor
from object_detection.meta_architectures import faster_rcnn_meta_arch
from object_detection.meta_architectures import rfcn_meta_arch
from object_detection.meta_architectures import ssd_meta_arch
from object_detection.models import faster_rcnn_inception_resnet_v2_feature_extractor as frcnn_inc_res
31
32
from object_detection.models import faster_rcnn_inception_v2_feature_extractor as frcnn_inc_v2
from object_detection.models import faster_rcnn_nas_feature_extractor as frcnn_nas
33
from object_detection.models import faster_rcnn_pnas_feature_extractor as frcnn_pnas
34
from object_detection.models import faster_rcnn_resnet_v1_feature_extractor as frcnn_resnet_v1
35
from object_detection.models import ssd_resnet_v1_fpn_feature_extractor as ssd_resnet_v1_fpn
36
from object_detection.models import ssd_resnet_v1_ppn_feature_extractor as ssd_resnet_v1_ppn
37
from object_detection.models.embedded_ssd_mobilenet_v1_feature_extractor import EmbeddedSSDMobileNetV1FeatureExtractor
38
from object_detection.models.ssd_inception_v2_feature_extractor import SSDInceptionV2FeatureExtractor
39
from object_detection.models.ssd_inception_v3_feature_extractor import SSDInceptionV3FeatureExtractor
40
from object_detection.models.ssd_mobilenet_v1_feature_extractor import SSDMobileNetV1FeatureExtractor
41
42
from object_detection.models.ssd_mobilenet_v1_fpn_feature_extractor import SSDMobileNetV1FpnFeatureExtractor
from object_detection.models.ssd_mobilenet_v1_ppn_feature_extractor import SSDMobileNetV1PpnFeatureExtractor
43
from object_detection.models.ssd_mobilenet_v2_feature_extractor import SSDMobileNetV2FeatureExtractor
44
45
46
47
48
from object_detection.protos import model_pb2

# A map of names to SSD feature extractors.
SSD_FEATURE_EXTRACTOR_CLASS_MAP = {
    'ssd_inception_v2': SSDInceptionV2FeatureExtractor,
49
    'ssd_inception_v3': SSDInceptionV3FeatureExtractor,
50
    'ssd_mobilenet_v1': SSDMobileNetV1FeatureExtractor,
51
52
    'ssd_mobilenet_v1_fpn': SSDMobileNetV1FpnFeatureExtractor,
    'ssd_mobilenet_v1_ppn': SSDMobileNetV1PpnFeatureExtractor,
53
    'ssd_mobilenet_v2': SSDMobileNetV2FeatureExtractor,
54
55
56
    'ssd_resnet50_v1_fpn': ssd_resnet_v1_fpn.SSDResnet50V1FpnFeatureExtractor,
    'ssd_resnet101_v1_fpn': ssd_resnet_v1_fpn.SSDResnet101V1FpnFeatureExtractor,
    'ssd_resnet152_v1_fpn': ssd_resnet_v1_fpn.SSDResnet152V1FpnFeatureExtractor,
57
58
59
60
61
    'ssd_resnet50_v1_ppn': ssd_resnet_v1_ppn.SSDResnet50V1PpnFeatureExtractor,
    'ssd_resnet101_v1_ppn':
        ssd_resnet_v1_ppn.SSDResnet101V1PpnFeatureExtractor,
    'ssd_resnet152_v1_ppn':
        ssd_resnet_v1_ppn.SSDResnet152V1PpnFeatureExtractor,
62
    'embedded_ssd_mobilenet_v1': EmbeddedSSDMobileNetV1FeatureExtractor,
63
64
65
66
}

# A map of names to Faster R-CNN feature extractors.
FASTER_RCNN_FEATURE_EXTRACTOR_CLASS_MAP = {
Vivek Rathod's avatar
Vivek Rathod committed
67
68
    'faster_rcnn_nas':
    frcnn_nas.FasterRCNNNASFeatureExtractor,
69
70
    'faster_rcnn_pnas':
    frcnn_pnas.FasterRCNNPNASFeatureExtractor,
71
72
73
74
    'faster_rcnn_inception_resnet_v2':
    frcnn_inc_res.FasterRCNNInceptionResnetV2FeatureExtractor,
    'faster_rcnn_inception_v2':
    frcnn_inc_v2.FasterRCNNInceptionV2FeatureExtractor,
75
76
77
78
79
80
81
82
83
    'faster_rcnn_resnet50':
    frcnn_resnet_v1.FasterRCNNResnet50FeatureExtractor,
    'faster_rcnn_resnet101':
    frcnn_resnet_v1.FasterRCNNResnet101FeatureExtractor,
    'faster_rcnn_resnet152':
    frcnn_resnet_v1.FasterRCNNResnet152FeatureExtractor,
}


84
85
def build(model_config, is_training, add_summaries=True,
          add_background_class=True):
86
87
88
89
90
91
  """Builds a DetectionModel based on the model config.

  Args:
    model_config: A model.proto object containing the config for the desired
      DetectionModel.
    is_training: True if this model is being built for training purposes.
92
    add_summaries: Whether to add tensorflow summaries in the model graph.
93
94
95
96
    add_background_class: Whether to add an implicit background class to one-hot
      encodings of groundtruth labels. Set to false if using groundtruth labels
      with an explicit background class or using multiclass scores instead of
      truth in the case of distillation. Ignored in the case of faster_rcnn.
97
98
99
100
101
102
103
104
105
106
  Returns:
    DetectionModel based on the config.

  Raises:
    ValueError: On invalid meta architecture or model.
  """
  if not isinstance(model_config, model_pb2.DetectionModel):
    raise ValueError('model_config not of type model_pb2.DetectionModel.')
  meta_architecture = model_config.WhichOneof('model')
  if meta_architecture == 'ssd':
107
108
    return _build_ssd_model(model_config.ssd, is_training, add_summaries,
                            add_background_class)
109
  if meta_architecture == 'faster_rcnn':
110
111
    return _build_faster_rcnn_model(model_config.faster_rcnn, is_training,
                                    add_summaries)
112
113
114
115
  raise ValueError('Unknown meta architecture: {}'.format(meta_architecture))


def _build_ssd_feature_extractor(feature_extractor_config, is_training,
116
                                 reuse_weights=None):
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
  """Builds a ssd_meta_arch.SSDFeatureExtractor based on config.

  Args:
    feature_extractor_config: A SSDFeatureExtractor proto config from ssd.proto.
    is_training: True if this feature extractor is being built for training.
    reuse_weights: if the feature extractor should reuse weights.

  Returns:
    ssd_meta_arch.SSDFeatureExtractor based on config.

  Raises:
    ValueError: On invalid feature extractor type.
  """
  feature_type = feature_extractor_config.type
  depth_multiplier = feature_extractor_config.depth_multiplier
  min_depth = feature_extractor_config.min_depth
133
  pad_to_multiple = feature_extractor_config.pad_to_multiple
134
  use_explicit_padding = feature_extractor_config.use_explicit_padding
135
  use_depthwise = feature_extractor_config.use_depthwise
136
137
  conv_hyperparams = hyperparams_builder.build(
      feature_extractor_config.conv_hyperparams, is_training)
138
139
  override_base_feature_extractor_hyperparams = (
      feature_extractor_config.override_base_feature_extractor_hyperparams)
140
141
142
143
144

  if feature_type not in SSD_FEATURE_EXTRACTOR_CLASS_MAP:
    raise ValueError('Unknown ssd feature_extractor: {}'.format(feature_type))

  feature_extractor_class = SSD_FEATURE_EXTRACTOR_CLASS_MAP[feature_type]
145
146
  return feature_extractor_class(
      is_training, depth_multiplier, min_depth, pad_to_multiple,
147
148
      conv_hyperparams, reuse_weights, use_explicit_padding, use_depthwise,
      override_base_feature_extractor_hyperparams)
149
150


151
152
def _build_ssd_model(ssd_config, is_training, add_summaries,
                     add_background_class=True):
153
154
155
156
157
158
  """Builds an SSD detection model based on the model config.

  Args:
    ssd_config: A ssd.proto object containing the config for the desired
      SSDMetaArch.
    is_training: True if this model is being built for training purposes.
159
    add_summaries: Whether to add tf summaries in the model.
160
161
162
163
    add_background_class: Whether to add an implicit background class to one-hot
      encodings of groundtruth labels. Set to false if using groundtruth labels
      with an explicit background class or using multiclass scores instead of
      truth in the case of distillation.
164
165
  Returns:
    SSDMetaArch based on the config.
166

167
168
169
170
171
172
173
  Raises:
    ValueError: If ssd_config.type is not recognized (i.e. not registered in
      model_class_map).
  """
  num_classes = ssd_config.num_classes

  # Feature extractor
174
  feature_extractor = _build_ssd_feature_extractor(
175
      feature_extractor_config=ssd_config.feature_extractor,
176
      is_training=is_training)
177
178
179
180
181

  box_coder = box_coder_builder.build(ssd_config.box_coder)
  matcher = matcher_builder.build(ssd_config.matcher)
  region_similarity_calculator = sim_calc.build(
      ssd_config.similarity_calculator)
182
  encode_background_as_zeros = ssd_config.encode_background_as_zeros
183
  negative_class_weight = ssd_config.negative_class_weight
184
185
186
187
188
189
190
191
192
  ssd_box_predictor = box_predictor_builder.build(hyperparams_builder.build,
                                                  ssd_config.box_predictor,
                                                  is_training, num_classes)
  anchor_generator = anchor_generator_builder.build(
      ssd_config.anchor_generator)
  image_resizer_fn = image_resizer_builder.build(ssd_config.image_resizer)
  non_max_suppression_fn, score_conversion_fn = post_processing_builder.build(
      ssd_config.post_processing)
  (classification_loss, localization_loss, classification_weight,
193
194
   localization_weight, hard_example_miner,
   random_example_sampler) = losses_builder.build(ssd_config.loss)
195
  normalize_loss_by_num_matches = ssd_config.normalize_loss_by_num_matches
196
  normalize_loc_loss_by_codesize = ssd_config.normalize_loc_loss_by_codesize
197
198
199
200
201
202
203
204
205

  return ssd_meta_arch.SSDMetaArch(
      is_training,
      anchor_generator,
      ssd_box_predictor,
      box_coder,
      feature_extractor,
      matcher,
      region_similarity_calculator,
206
      encode_background_as_zeros,
207
      negative_class_weight,
208
209
210
211
212
213
214
215
      image_resizer_fn,
      non_max_suppression_fn,
      score_conversion_fn,
      classification_loss,
      localization_loss,
      classification_weight,
      localization_weight,
      normalize_loss_by_num_matches,
216
      hard_example_miner,
217
      add_summaries=add_summaries,
218
219
      normalize_loc_loss_by_codesize=normalize_loc_loss_by_codesize,
      freeze_batchnorm=ssd_config.freeze_batchnorm,
220
      inplace_batchnorm_update=ssd_config.inplace_batchnorm_update,
221
222
      add_background_class=add_background_class,
      random_example_sampler=random_example_sampler)
223
224
225


def _build_faster_rcnn_feature_extractor(
226
227
    feature_extractor_config, is_training, reuse_weights=None,
    inplace_batchnorm_update=False):
228
229
230
231
232
233
234
  """Builds a faster_rcnn_meta_arch.FasterRCNNFeatureExtractor based on config.

  Args:
    feature_extractor_config: A FasterRcnnFeatureExtractor proto config from
      faster_rcnn.proto.
    is_training: True if this feature extractor is being built for training.
    reuse_weights: if the feature extractor should reuse weights.
235
236
237
238
239
    inplace_batchnorm_update: Whether to update batch_norm inplace during
      training. This is required for batch norm to work correctly on TPUs. When
      this is false, user must add a control dependency on
      tf.GraphKeys.UPDATE_OPS for train/loss op in order to update the batch
      norm moving average parameters.
240
241
242
243
244
245
246

  Returns:
    faster_rcnn_meta_arch.FasterRCNNFeatureExtractor based on config.

  Raises:
    ValueError: On invalid feature extractor type.
  """
247
248
  if inplace_batchnorm_update:
    raise ValueError('inplace batchnorm updates not supported.')
249
250
251
  feature_type = feature_extractor_config.type
  first_stage_features_stride = (
      feature_extractor_config.first_stage_features_stride)
252
  batch_norm_trainable = feature_extractor_config.batch_norm_trainable
253
254
255
256
257
258
259

  if feature_type not in FASTER_RCNN_FEATURE_EXTRACTOR_CLASS_MAP:
    raise ValueError('Unknown Faster R-CNN feature_extractor: {}'.format(
        feature_type))
  feature_extractor_class = FASTER_RCNN_FEATURE_EXTRACTOR_CLASS_MAP[
      feature_type]
  return feature_extractor_class(
260
261
      is_training, first_stage_features_stride,
      batch_norm_trainable, reuse_weights)
262
263


264
def _build_faster_rcnn_model(frcnn_config, is_training, add_summaries):
265
266
267
268
269
270
271
  """Builds a Faster R-CNN or R-FCN detection model based on the model config.

  Builds R-FCN model if the second_stage_box_predictor in the config is of type
  `rfcn_box_predictor` else builds a Faster R-CNN model.

  Args:
    frcnn_config: A faster_rcnn.proto object containing the config for the
272
      desired FasterRCNNMetaArch or RFCNMetaArch.
273
    is_training: True if this model is being built for training purposes.
274
    add_summaries: Whether to add tf summaries in the model.
275
276
277

  Returns:
    FasterRCNNMetaArch based on the config.
278

279
280
281
282
283
284
285
286
  Raises:
    ValueError: If frcnn_config.type is not recognized (i.e. not registered in
      model_class_map).
  """
  num_classes = frcnn_config.num_classes
  image_resizer_fn = image_resizer_builder.build(frcnn_config.image_resizer)

  feature_extractor = _build_faster_rcnn_feature_extractor(
287
288
      frcnn_config.feature_extractor, is_training,
      frcnn_config.inplace_batchnorm_update)
289

290
  number_of_stages = frcnn_config.number_of_stages
291
292
293
294
  first_stage_anchor_generator = anchor_generator_builder.build(
      frcnn_config.first_stage_anchor_generator)

  first_stage_atrous_rate = frcnn_config.first_stage_atrous_rate
295
  first_stage_box_predictor_arg_scope_fn = hyperparams_builder.build(
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
      frcnn_config.first_stage_box_predictor_conv_hyperparams, is_training)
  first_stage_box_predictor_kernel_size = (
      frcnn_config.first_stage_box_predictor_kernel_size)
  first_stage_box_predictor_depth = frcnn_config.first_stage_box_predictor_depth
  first_stage_minibatch_size = frcnn_config.first_stage_minibatch_size
  first_stage_positive_balance_fraction = (
      frcnn_config.first_stage_positive_balance_fraction)
  first_stage_nms_score_threshold = frcnn_config.first_stage_nms_score_threshold
  first_stage_nms_iou_threshold = frcnn_config.first_stage_nms_iou_threshold
  first_stage_max_proposals = frcnn_config.first_stage_max_proposals
  first_stage_loc_loss_weight = (
      frcnn_config.first_stage_localization_loss_weight)
  first_stage_obj_loss_weight = frcnn_config.first_stage_objectness_loss_weight

  initial_crop_size = frcnn_config.initial_crop_size
  maxpool_kernel_size = frcnn_config.maxpool_kernel_size
  maxpool_stride = frcnn_config.maxpool_stride

  second_stage_box_predictor = box_predictor_builder.build(
      hyperparams_builder.build,
      frcnn_config.second_stage_box_predictor,
      is_training=is_training,
      num_classes=num_classes)
  second_stage_batch_size = frcnn_config.second_stage_batch_size
  second_stage_balance_fraction = frcnn_config.second_stage_balance_fraction
  (second_stage_non_max_suppression_fn, second_stage_score_conversion_fn
  ) = post_processing_builder.build(frcnn_config.second_stage_post_processing)
  second_stage_localization_loss_weight = (
      frcnn_config.second_stage_localization_loss_weight)
325
326
327
  second_stage_classification_loss = (
      losses_builder.build_faster_rcnn_classification_loss(
          frcnn_config.second_stage_classification_loss))
328
329
  second_stage_classification_loss_weight = (
      frcnn_config.second_stage_classification_loss_weight)
330
331
  second_stage_mask_prediction_loss_weight = (
      frcnn_config.second_stage_mask_prediction_loss_weight)
332
333
334
335
336
337
338
339

  hard_example_miner = None
  if frcnn_config.HasField('hard_example_miner'):
    hard_example_miner = losses_builder.build_hard_example_miner(
        frcnn_config.hard_example_miner,
        second_stage_classification_loss_weight,
        second_stage_localization_loss_weight)

340
341
  use_matmul_crop_and_resize = (frcnn_config.use_matmul_crop_and_resize)

342
343
344
345
346
  common_kwargs = {
      'is_training': is_training,
      'num_classes': num_classes,
      'image_resizer_fn': image_resizer_fn,
      'feature_extractor': feature_extractor,
347
      'number_of_stages': number_of_stages,
348
349
      'first_stage_anchor_generator': first_stage_anchor_generator,
      'first_stage_atrous_rate': first_stage_atrous_rate,
350
351
      'first_stage_box_predictor_arg_scope_fn':
      first_stage_box_predictor_arg_scope_fn,
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
      'first_stage_box_predictor_kernel_size':
      first_stage_box_predictor_kernel_size,
      'first_stage_box_predictor_depth': first_stage_box_predictor_depth,
      'first_stage_minibatch_size': first_stage_minibatch_size,
      'first_stage_positive_balance_fraction':
      first_stage_positive_balance_fraction,
      'first_stage_nms_score_threshold': first_stage_nms_score_threshold,
      'first_stage_nms_iou_threshold': first_stage_nms_iou_threshold,
      'first_stage_max_proposals': first_stage_max_proposals,
      'first_stage_localization_loss_weight': first_stage_loc_loss_weight,
      'first_stage_objectness_loss_weight': first_stage_obj_loss_weight,
      'second_stage_batch_size': second_stage_batch_size,
      'second_stage_balance_fraction': second_stage_balance_fraction,
      'second_stage_non_max_suppression_fn':
      second_stage_non_max_suppression_fn,
      'second_stage_score_conversion_fn': second_stage_score_conversion_fn,
      'second_stage_localization_loss_weight':
      second_stage_localization_loss_weight,
370
371
      'second_stage_classification_loss':
      second_stage_classification_loss,
372
373
      'second_stage_classification_loss_weight':
      second_stage_classification_loss_weight,
374
      'hard_example_miner': hard_example_miner,
375
376
377
      'add_summaries': add_summaries,
      'use_matmul_crop_and_resize': use_matmul_crop_and_resize
  }
378
379
380
381
382
383
384
385
386
387
388

  if isinstance(second_stage_box_predictor, box_predictor.RfcnBoxPredictor):
    return rfcn_meta_arch.RFCNMetaArch(
        second_stage_rfcn_box_predictor=second_stage_box_predictor,
        **common_kwargs)
  else:
    return faster_rcnn_meta_arch.FasterRCNNMetaArch(
        initial_crop_size=initial_crop_size,
        maxpool_kernel_size=maxpool_kernel_size,
        maxpool_stride=maxpool_stride,
        second_stage_mask_rcnn_box_predictor=second_stage_box_predictor,
389
390
        second_stage_mask_prediction_loss_weight=(
            second_stage_mask_prediction_loss_weight),
391
        **common_kwargs)