model.py 21.9 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
# Copyright 2017 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
r"""Creates and runs `Experiment` for object detection model.

This uses the TF.learn framework to define and run an object detection model
wrapped in an `Estimator`.
Note that this module is only compatible with SSD Meta architecture at the
moment.
"""

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import functools
import os

import tensorflow as tf

from google.protobuf import text_format
from tensorflow.contrib.learn.python.learn import learn_runner
from tensorflow.contrib.tpu.python.tpu import tpu_optimizer
35
from tensorflow.python.lib.io import file_io
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
from object_detection import eval_util
from object_detection import inputs
from object_detection import model_hparams
from object_detection.builders import model_builder
from object_detection.builders import optimizer_builder
from object_detection.core import standard_fields as fields
from object_detection.utils import config_util
from object_detection.utils import label_map_util
from object_detection.utils import shape_utils
from object_detection.utils import variables_helper
from object_detection.utils import visualization_utils as vis_utils

tf.flags.DEFINE_string('model_dir', None, 'Path to output model directory '
                       'where event and checkpoint files will be written.')
tf.flags.DEFINE_string('pipeline_config_path', None, 'Path to pipeline config '
                       'file.')
tf.flags.DEFINE_integer('num_train_steps', 500000, 'Number of train steps.')
tf.flags.DEFINE_integer('num_eval_steps', 10000, 'Number of train steps.')
FLAGS = tf.flags.FLAGS


57
58
59
60
61
62
63
64
65
66
67
68
69
70
# A map of names to methods that help build the model.
MODEL_BUILD_UTIL_MAP = {
    'get_configs_from_pipeline_file':
        config_util.get_configs_from_pipeline_file,
    'create_pipeline_proto_from_configs':
        config_util.create_pipeline_proto_from_configs,
    'merge_external_params_with_configs':
        config_util.merge_external_params_with_configs,
    'create_train_input_fn': inputs.create_train_input_fn,
    'create_eval_input_fn': inputs.create_eval_input_fn,
    'create_predict_input_fn': inputs.create_predict_input_fn,
}


71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
def _get_groundtruth_data(detection_model, class_agnostic):
  """Extracts groundtruth data from detection_model.

  Args:
    detection_model: A `DetectionModel` object.
    class_agnostic: Whether the detections are class_agnostic.

  Returns:
    A tuple of:
    groundtruth: Dictionary with the following fields:
      'groundtruth_boxes': [num_boxes, 4] float32 tensor of boxes, in
        normalized coordinates.
      'groundtruth_classes': [num_boxes] int64 tensor of 1-indexed classes.
      'groundtruth_masks': 3D float32 tensor of instance masks (if provided in
        groundtruth)
    class_agnostic: Boolean indicating whether detections are class agnostic.
  """
  input_data_fields = fields.InputDataFields()
  groundtruth_boxes = detection_model.groundtruth_lists(
      fields.BoxListFields.boxes)[0]
  # For class-agnostic models, groundtruth one-hot encodings collapse to all
  # ones.
  if class_agnostic:
    groundtruth_boxes_shape = tf.shape(groundtruth_boxes)
    groundtruth_classes_one_hot = tf.ones([groundtruth_boxes_shape[0], 1])
  else:
    groundtruth_classes_one_hot = detection_model.groundtruth_lists(
        fields.BoxListFields.classes)[0]
  label_id_offset = 1  # Applying label id offset (b/63711816)
  groundtruth_classes = (
      tf.argmax(groundtruth_classes_one_hot, axis=1) + label_id_offset)
  groundtruth = {
      input_data_fields.groundtruth_boxes: groundtruth_boxes,
      input_data_fields.groundtruth_classes: groundtruth_classes
  }
  if detection_model.groundtruth_has_field(fields.BoxListFields.masks):
    groundtruth[input_data_fields.groundtruth_instance_masks] = (
        detection_model.groundtruth_lists(fields.BoxListFields.masks)[0])
  return groundtruth


def unstack_batch(tensor_dict, unpad_groundtruth_tensors=True):
  """Unstacks all tensors in `tensor_dict` along 0th dimension.

  Unstacks tensor from the tensor dict along 0th dimension and returns a
  tensor_dict containing values that are lists of unstacked tensors.

  Tensors in the `tensor_dict` are expected to be of one of the three shapes:
  1. [batch_size]
  2. [batch_size, height, width, channels]
  3. [batch_size, num_boxes, d1, d2, ... dn]

123
124
  When unpad_groundtruth_tensors is set to true, unstacked tensors of form 3
  above are sliced along the `num_boxes` dimension using the value in tensor
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
  field.InputDataFields.num_groundtruth_boxes.

  Note that this function has a static list of input data fields and has to be
  kept in sync with the InputDataFields defined in core/standard_fields.py

  Args:
    tensor_dict: A dictionary of batched groundtruth tensors.
    unpad_groundtruth_tensors: Whether to remove padding along `num_boxes`
      dimension of the groundtruth tensors.

  Returns:
    A dictionary where the keys are from fields.InputDataFields and values are
    a list of unstacked (optionally unpadded) tensors.

  Raises:
    ValueError: If unpad_tensors is True and `tensor_dict` does not contain
      `num_groundtruth_boxes` tensor.
  """
  unbatched_tensor_dict = {key: tf.unstack(tensor)
                           for key, tensor in tensor_dict.items()}
  if unpad_groundtruth_tensors:
    if (fields.InputDataFields.num_groundtruth_boxes not in
        unbatched_tensor_dict):
      raise ValueError('`num_groundtruth_boxes` not found in tensor_dict. '
                       'Keys available: {}'.format(
                           unbatched_tensor_dict.keys()))
    unbatched_unpadded_tensor_dict = {}
    unpad_keys = set([
        # List of input data fields that are padded along the num_boxes
        # dimension. This list has to be kept in sync with InputDataFields in
        # standard_fields.py.
        fields.InputDataFields.groundtruth_instance_masks,
        fields.InputDataFields.groundtruth_classes,
        fields.InputDataFields.groundtruth_boxes,
        fields.InputDataFields.groundtruth_keypoints,
        fields.InputDataFields.groundtruth_group_of,
        fields.InputDataFields.groundtruth_difficult,
        fields.InputDataFields.groundtruth_is_crowd,
        fields.InputDataFields.groundtruth_area,
        fields.InputDataFields.groundtruth_weights
    ]).intersection(set(unbatched_tensor_dict.keys()))

    for key in unpad_keys:
      unpadded_tensor_list = []
      for num_gt, padded_tensor in zip(
          unbatched_tensor_dict[fields.InputDataFields.num_groundtruth_boxes],
          unbatched_tensor_dict[key]):
        tensor_shape = shape_utils.combined_static_and_dynamic_shape(
            padded_tensor)
        slice_begin = tf.zeros([len(tensor_shape)], dtype=tf.int32)
        slice_size = tf.stack(
            [num_gt] + [-1 if dim is None else dim for dim in tensor_shape[1:]])
        unpadded_tensor = tf.slice(padded_tensor, slice_begin, slice_size)
        unpadded_tensor_list.append(unpadded_tensor)
      unbatched_unpadded_tensor_dict[key] = unpadded_tensor_list
    unbatched_tensor_dict.update(unbatched_unpadded_tensor_dict)

  return unbatched_tensor_dict


def create_model_fn(detection_model_fn, configs, hparams, use_tpu=False):
  """Creates a model function for `Estimator`.

  Args:
    detection_model_fn: Function that returns a `DetectionModel` instance.
    configs: Dictionary of pipeline config objects.
    hparams: `HParams` object.
    use_tpu: Boolean indicating whether model should be constructed for
        use on TPU.

  Returns:
    `model_fn` for `Estimator`.
  """
  train_config = configs['train_config']
  eval_input_config = configs['eval_input_config']
200
  eval_config = configs['eval_config']
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252

  def model_fn(features, labels, mode, params=None):
    """Constructs the object detection model.

    Args:
      features: Dictionary of feature tensors, returned from `input_fn`.
      labels: Dictionary of groundtruth tensors if mode is TRAIN or EVAL,
        otherwise None.
      mode: Mode key from tf.estimator.ModeKeys.
      params: Parameter dictionary passed from the estimator.

    Returns:
      An `EstimatorSpec` that encapsulates the model and its serving
        configurations.
    """
    params = params or {}
    total_loss, train_op, detections, export_outputs = None, None, None, None
    is_training = mode == tf.estimator.ModeKeys.TRAIN
    detection_model = detection_model_fn(is_training=is_training,
                                         add_summaries=(not use_tpu))
    scaffold_fn = None

    if mode == tf.estimator.ModeKeys.TRAIN:
      labels = unstack_batch(
          labels,
          unpad_groundtruth_tensors=train_config.unpad_groundtruth_tensors)
    elif mode == tf.estimator.ModeKeys.EVAL:
      labels = unstack_batch(labels, unpad_groundtruth_tensors=False)

    if mode in (tf.estimator.ModeKeys.TRAIN, tf.estimator.ModeKeys.EVAL):
      gt_boxes_list = labels[fields.InputDataFields.groundtruth_boxes]
      gt_classes_list = labels[fields.InputDataFields.groundtruth_classes]
      gt_masks_list = None
      if fields.InputDataFields.groundtruth_instance_masks in labels:
        gt_masks_list = labels[
            fields.InputDataFields.groundtruth_instance_masks]
      gt_keypoints_list = None
      if fields.InputDataFields.groundtruth_keypoints in labels:
        gt_keypoints_list = labels[fields.InputDataFields.groundtruth_keypoints]
      detection_model.provide_groundtruth(
          groundtruth_boxes_list=gt_boxes_list,
          groundtruth_classes_list=gt_classes_list,
          groundtruth_masks_list=gt_masks_list,
          groundtruth_keypoints_list=gt_keypoints_list)

    preprocessed_images = features[fields.InputDataFields.image]
    prediction_dict = detection_model.predict(
        preprocessed_images, features[fields.InputDataFields.true_image_shape])
    detections = detection_model.postprocess(
        prediction_dict, features[fields.InputDataFields.true_image_shape])

    if mode == tf.estimator.ModeKeys.TRAIN:
253
254
255
256
257
258
259
260
      if not train_config.fine_tune_checkpoint_type:
        # train_config.from_detection_checkpoint field is deprecated. For
        # backward compatibility, sets finetune_checkpoint_type based on
        # from_detection_checkpoint.
        if train_config.from_detection_checkpoint:
          train_config.fine_tune_checkpoint_type = 'detection'
        else:
          train_config.fine_tune_checkpoint_type = 'classification'
261
      if train_config.fine_tune_checkpoint and hparams.load_pretrained:
262
263
264
265
266
267
268
269
        if not train_config.fine_tune_checkpoint_type:
          # train_config.from_detection_checkpoint field is deprecated. For
          # backward compatibility, set train_config.fine_tune_checkpoint_type
          # based on train_config.from_detection_checkpoint.
          if train_config.from_detection_checkpoint:
            train_config.fine_tune_checkpoint_type = 'detection'
          else:
            train_config.fine_tune_checkpoint_type = 'classification'
270
        asg_map = detection_model.restore_map(
271
            fine_tune_checkpoint_type=train_config.fine_tune_checkpoint_type,
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
            load_all_detection_checkpoint_vars=(
                train_config.load_all_detection_checkpoint_vars))
        available_var_map = (
            variables_helper.get_variables_available_in_checkpoint(
                asg_map, train_config.fine_tune_checkpoint,
                include_global_step=False))
        if use_tpu:
          def tpu_scaffold():
            tf.train.init_from_checkpoint(train_config.fine_tune_checkpoint,
                                          available_var_map)
            return tf.train.Scaffold()
          scaffold_fn = tpu_scaffold
        else:
          tf.train.init_from_checkpoint(train_config.fine_tune_checkpoint,
                                        available_var_map)

    if mode in (tf.estimator.ModeKeys.TRAIN, tf.estimator.ModeKeys.EVAL):
      losses_dict = detection_model.loss(
          prediction_dict, features[fields.InputDataFields.true_image_shape])
      losses = [loss_tensor for loss_tensor in losses_dict.itervalues()]
292
293
294
295
296
297
298
299
300
      if train_config.add_regularization_loss:
        regularization_losses = tf.get_collection(
            tf.GraphKeys.REGULARIZATION_LOSSES)
        if regularization_losses:
          regularization_loss = tf.add_n(regularization_losses,
                                         name='regularization_loss')
          losses.append(regularization_loss)
          if not use_tpu:
            tf.summary.scalar('regularization_loss', regularization_loss)
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
      total_loss = tf.add_n(losses, name='total_loss')

    if mode == tf.estimator.ModeKeys.TRAIN:
      global_step = tf.train.get_or_create_global_step()
      training_optimizer, optimizer_summary_vars = optimizer_builder.build(
          train_config.optimizer)

      if use_tpu:
        training_optimizer = tpu_optimizer.CrossShardOptimizer(
            training_optimizer)

      # Optionally freeze some layers by setting their gradients to be zero.
      trainable_variables = None
      if train_config.freeze_variables:
        trainable_variables = tf.contrib.framework.filter_variables(
            tf.trainable_variables(),
            exclude_patterns=train_config.freeze_variables)

      clip_gradients_value = None
      if train_config.gradient_clipping_by_norm > 0:
        clip_gradients_value = train_config.gradient_clipping_by_norm

      if not use_tpu:
        for var in optimizer_summary_vars:
          tf.summary.scalar(var.op.name, var)
      summaries = [] if use_tpu else None
      train_op = tf.contrib.layers.optimize_loss(
          loss=total_loss,
          global_step=global_step,
          learning_rate=None,
          clip_gradients=clip_gradients_value,
          optimizer=training_optimizer,
          variables=trainable_variables,
          summaries=summaries,
          name='')  # Preventing scope prefix on all variables.

    if mode == tf.estimator.ModeKeys.PREDICT:
      export_outputs = {
          tf.saved_model.signature_constants.PREDICT_METHOD_NAME:
              tf.estimator.export.PredictOutput(detections)
      }

    eval_metric_ops = None
344
    if mode in (tf.estimator.ModeKeys.TRAIN, tf.estimator.ModeKeys.EVAL):
345
346
347
      class_agnostic = (fields.DetectionResultFields.detection_classes
                        not in detections)
      groundtruth = _get_groundtruth_data(detection_model, class_agnostic)
348
      use_original_images = fields.InputDataFields.original_image in features
349
      original_images = (
350
351
          features[fields.InputDataFields.original_image] if use_original_images
          else features[fields.InputDataFields.image])
352
      eval_dict = eval_util.result_dict_for_single_example(
353
          original_images[0:1],
354
355
356
357
358
359
360
361
362
363
364
          features[inputs.HASH_KEY][0],
          detections,
          groundtruth,
          class_agnostic=class_agnostic,
          scale_to_absolute=False)

      if class_agnostic:
        category_index = label_map_util.create_class_agnostic_category_index()
      else:
        category_index = label_map_util.create_category_index_from_labelmap(
            eval_input_config.label_map_path)
365
      if not use_tpu and use_original_images:
366
367
368
369
        detection_and_groundtruth = (
            vis_utils.draw_side_by_side_evaluation_image(
                eval_dict, category_index, max_boxes_to_draw=20,
                min_score_thresh=0.2))
370
371
372
373
374
375
376
377
378
379
380
381
382
        img_summary = tf.summary.image('Detections_Left_Groundtruth_Right',
                                       detection_and_groundtruth)

      if mode == tf.estimator.ModeKeys.EVAL:
        # Eval metrics on a single example.
        eval_metrics = eval_config.metrics_set
        if not eval_metrics:
          eval_metrics = ['coco_detection_metrics']
        eval_metric_ops = eval_util.get_eval_metric_ops_for_evaluators(
            eval_metrics, category_index.values(), eval_dict,
            include_metrics_per_category=False)
        eval_metric_ops['Detections_Left_Groundtruth_Right'] = (
            img_summary, tf.no_op())
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404

    if use_tpu:
      return tf.contrib.tpu.TPUEstimatorSpec(
          mode=mode,
          scaffold_fn=scaffold_fn,
          predictions=detections,
          loss=total_loss,
          train_op=train_op,
          eval_metrics=eval_metric_ops,
          export_outputs=export_outputs)
    else:
      return tf.estimator.EstimatorSpec(
          mode=mode,
          predictions=detections,
          loss=total_loss,
          train_op=train_op,
          eval_metric_ops=eval_metric_ops,
          export_outputs=export_outputs)

  return model_fn


405
def build_experiment_fn(train_steps, eval_steps):
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
  """Returns a function that creates an `Experiment`."""

  def build_experiment(run_config, hparams):
    """Builds an `Experiment` from configuration and hyperparameters.

    Args:
      run_config: A `RunConfig`.
      hparams: A `HParams`.

    Returns:
      An `Experiment` object.
    """
    return populate_experiment(run_config, hparams, FLAGS.pipeline_config_path,
                               train_steps, eval_steps)

  return build_experiment


def populate_experiment(run_config,
                        hparams,
                        pipeline_config_path,
                        train_steps=None,
                        eval_steps=None,
                        model_fn_creator=create_model_fn,
                        **kwargs):
  """Populates an `Experiment` object.

  Args:
    run_config: A `RunConfig`.
    hparams: A `HParams`.
    pipeline_config_path: A path to a pipeline config file.
    train_steps: Number of training steps. If None, the number of training steps
      is set from the `TrainConfig` proto.
    eval_steps: Number of evaluation steps per evaluation cycle. If None, the
      number of evaluation steps is set from the `EvalConfig` proto.
    model_fn_creator: A function that creates a `model_fn` for `Estimator`.
      Follows the signature:

      * Args:
        * `detection_model_fn`: Function that returns `DetectionModel` instance.
        * `configs`: Dictionary of pipeline config objects.
        * `hparams`: `HParams` object.
      * Returns:
        `model_fn` for `Estimator`.

    **kwargs: Additional keyword arguments for configuration override.

  Returns:
    An `Experiment` that defines all aspects of training, evaluation, and
    export.
  """
457
458
459
460
461
462
463
464
465
466
467
468
  get_configs_from_pipeline_file = MODEL_BUILD_UTIL_MAP[
      'get_configs_from_pipeline_file']
  create_pipeline_proto_from_configs = MODEL_BUILD_UTIL_MAP[
      'create_pipeline_proto_from_configs']
  merge_external_params_with_configs = MODEL_BUILD_UTIL_MAP[
      'merge_external_params_with_configs']
  create_train_input_fn = MODEL_BUILD_UTIL_MAP['create_train_input_fn']
  create_eval_input_fn = MODEL_BUILD_UTIL_MAP['create_eval_input_fn']
  create_predict_input_fn = MODEL_BUILD_UTIL_MAP['create_predict_input_fn']

  configs = get_configs_from_pipeline_file(pipeline_config_path)
  configs = merge_external_params_with_configs(
469
470
471
472
473
474
475
476
477
478
479
      configs,
      hparams,
      train_steps=train_steps,
      eval_steps=eval_steps,
      **kwargs)
  model_config = configs['model']
  train_config = configs['train_config']
  train_input_config = configs['train_input_config']
  eval_config = configs['eval_config']
  eval_input_config = configs['eval_input_config']

480
481
  if train_steps is None and train_config.num_steps:
    train_steps = train_config.num_steps
482

483
484
  if eval_steps is None and eval_config.num_examples:
    eval_steps = eval_config.num_examples
485
486
487
488
489

  detection_model_fn = functools.partial(
      model_builder.build, model_config=model_config)

  # Create the input functions for TRAIN/EVAL.
490
  train_input_fn = create_train_input_fn(
491
492
493
      train_config=train_config,
      train_input_config=train_input_config,
      model_config=model_config)
494
  eval_input_fn = create_eval_input_fn(
495
496
497
498
499
500
      eval_config=eval_config,
      eval_input_config=eval_input_config,
      model_config=model_config)

  export_strategies = [
      tf.contrib.learn.utils.saved_model_export_utils.make_export_strategy(
501
          serving_input_fn=create_predict_input_fn(
502
503
504
505
506
507
508
509
510
              model_config=model_config))
  ]

  estimator = tf.estimator.Estimator(
      model_fn=model_fn_creator(detection_model_fn, configs, hparams),
      config=run_config)

  if run_config.is_chief:
    # Store the final pipeline config for traceability.
511
    pipeline_config_final = create_pipeline_proto_from_configs(
512
        configs)
513
514
    if not file_io.file_exists(estimator.model_dir):
      file_io.recursive_create_dir(estimator.model_dir)
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
    pipeline_config_final_path = os.path.join(estimator.model_dir,
                                              'pipeline.config')
    config_text = text_format.MessageToString(pipeline_config_final)
    with tf.gfile.Open(pipeline_config_final_path, 'wb') as f:
      tf.logging.info('Writing as-run pipeline config file to %s',
                      pipeline_config_final_path)
      f.write(config_text)

  return tf.contrib.learn.Experiment(
      estimator=estimator,
      train_input_fn=train_input_fn,
      eval_input_fn=eval_input_fn,
      train_steps=train_steps,
      eval_steps=eval_steps,
      export_strategies=export_strategies,
      eval_delay_secs=120,)


def main(unused_argv):
  tf.flags.mark_flag_as_required('model_dir')
  tf.flags.mark_flag_as_required('pipeline_config_path')
  config = tf.contrib.learn.RunConfig(model_dir=FLAGS.model_dir)
  learn_runner.run(
538
539
      experiment_fn=build_experiment_fn(FLAGS.num_train_steps,
                                        FLAGS.num_eval_steps),
540
541
542
543
544
545
      run_config=config,
      hparams=model_hparams.create_hparams())


if __name__ == '__main__':
  tf.app.run()