utils.py 9.34 KB
Newer Older
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
1
# Copyright 2022 The TensorFlow Authors. All Rights Reserved.
Hye Yoon's avatar
Hye Yoon committed
2
3
4
5
6
7
8
9
10
11
12
13
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
14

Hye Yoon's avatar
Hye Yoon committed
15
16
"""Contains a collection of util functions for training and evaluating."""

17
from absl import logging
18
import numpy as np
Hye Yoon's avatar
Hye Yoon committed
19
import tensorflow as tf
20
from official.vision.dataloaders import tfexample_utils
Hye Yoon's avatar
Hye Yoon committed
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116


def Dequantize(feat_vector, max_quantized_value=2, min_quantized_value=-2):
  """Dequantize the feature from the byte format to the float format.

  Args:
    feat_vector: the input 1-d vector.
    max_quantized_value: the maximum of the quantized value.
    min_quantized_value: the minimum of the quantized value.

  Returns:
    A float vector which has the same shape as feat_vector.
  """
  assert max_quantized_value > min_quantized_value
  quantized_range = max_quantized_value - min_quantized_value
  scalar = quantized_range / 255.0
  bias = (quantized_range / 512.0) + min_quantized_value
  return feat_vector * scalar + bias


def MakeSummary(name, value):
  """Creates a tf.Summary proto with the given name and value."""
  summary = tf.Summary()
  val = summary.value.add()
  val.tag = str(name)
  val.simple_value = float(value)
  return summary


def AddGlobalStepSummary(summary_writer,
                         global_step_val,
                         global_step_info_dict,
                         summary_scope="Eval"):
  """Add the global_step summary to the Tensorboard.

  Args:
    summary_writer: Tensorflow summary_writer.
    global_step_val: a int value of the global step.
    global_step_info_dict: a dictionary of the evaluation metrics calculated for
      a mini-batch.
    summary_scope: Train or Eval.

  Returns:
    A string of this global_step summary
  """
  this_hit_at_one = global_step_info_dict["hit_at_one"]
  this_perr = global_step_info_dict["perr"]
  this_loss = global_step_info_dict["loss"]
  examples_per_second = global_step_info_dict.get("examples_per_second", -1)

  summary_writer.add_summary(
      MakeSummary("GlobalStep/" + summary_scope + "_Hit@1", this_hit_at_one),
      global_step_val)
  summary_writer.add_summary(
      MakeSummary("GlobalStep/" + summary_scope + "_Perr", this_perr),
      global_step_val)
  summary_writer.add_summary(
      MakeSummary("GlobalStep/" + summary_scope + "_Loss", this_loss),
      global_step_val)

  if examples_per_second != -1:
    summary_writer.add_summary(
        MakeSummary("GlobalStep/" + summary_scope + "_Example_Second",
                    examples_per_second), global_step_val)

  summary_writer.flush()
  info = (
      "global_step {0} | Batch Hit@1: {1:.3f} | Batch PERR: {2:.3f} | Batch "
      "Loss: {3:.3f} | Examples_per_sec: {4:.3f}").format(
          global_step_val, this_hit_at_one, this_perr, this_loss,
          examples_per_second)
  return info


def AddEpochSummary(summary_writer,
                    global_step_val,
                    epoch_info_dict,
                    summary_scope="Eval"):
  """Add the epoch summary to the Tensorboard.

  Args:
    summary_writer: Tensorflow summary_writer.
    global_step_val: a int value of the global step.
    epoch_info_dict: a dictionary of the evaluation metrics calculated for the
      whole epoch.
    summary_scope: Train or Eval.

  Returns:
    A string of this global_step summary
  """
  epoch_id = epoch_info_dict["epoch_id"]
  avg_hit_at_one = epoch_info_dict["avg_hit_at_one"]
  avg_perr = epoch_info_dict["avg_perr"]
  avg_loss = epoch_info_dict["avg_loss"]
  aps = epoch_info_dict["aps"]
  gap = epoch_info_dict["gap"]
117
  mean_ap = np.mean(aps)
Hye Yoon's avatar
Hye Yoon committed
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141

  summary_writer.add_summary(
      MakeSummary("Epoch/" + summary_scope + "_Avg_Hit@1", avg_hit_at_one),
      global_step_val)
  summary_writer.add_summary(
      MakeSummary("Epoch/" + summary_scope + "_Avg_Perr", avg_perr),
      global_step_val)
  summary_writer.add_summary(
      MakeSummary("Epoch/" + summary_scope + "_Avg_Loss", avg_loss),
      global_step_val)
  summary_writer.add_summary(
      MakeSummary("Epoch/" + summary_scope + "_MAP", mean_ap), global_step_val)
  summary_writer.add_summary(
      MakeSummary("Epoch/" + summary_scope + "_GAP", gap), global_step_val)
  summary_writer.flush()

  info = ("epoch/eval number {0} | Avg_Hit@1: {1:.3f} | Avg_PERR: {2:.3f} "
          "| MAP: {3:.3f} | GAP: {4:.3f} | Avg_Loss: {5:3f} | num_classes: {6}"
         ).format(epoch_id, avg_hit_at_one, avg_perr, mean_ap, gap, avg_loss,
                  len(aps))
  return info


def GetListOfFeatureNamesAndSizes(feature_names, feature_sizes):
142
  """Extract the list of feature names and the dimensionality.
Hye Yoon's avatar
Hye Yoon committed
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158

  Args:
    feature_names: string containing comma separated list of feature names
    feature_sizes: string containing comma separated list of feature sizes

  Returns:
    List of the feature names and list of the dimensionality of each feature.
    Elements in the first/second list are strings/integers.
  """
  list_of_feature_names = [
      feature_names.strip() for feature_names in feature_names.split(",")
  ]
  list_of_feature_sizes = [
      int(feature_sizes) for feature_sizes in feature_sizes.split(",")
  ]
  if len(list_of_feature_names) != len(list_of_feature_sizes):
159
160
161
162
    logging.error(
        "length of the feature names (=%r) != length of feature "
        "sizes (=%r)", str(len(list_of_feature_names)),
        str(len(list_of_feature_sizes)))
Hye Yoon's avatar
Hye Yoon committed
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206

  return list_of_feature_names, list_of_feature_sizes


def ClipGradientNorms(gradients_to_variables, max_norm):
  """Clips the gradients by the given value.

  Args:
    gradients_to_variables: A list of gradient to variable pairs (tuples).
    max_norm: the maximum norm value.

  Returns:
    A list of clipped gradient to variable pairs.
  """
  clipped_grads_and_vars = []
  for grad, var in gradients_to_variables:
    if grad is not None:
      if isinstance(grad, tf.IndexedSlices):
        tmp = tf.clip_by_norm(grad.values, max_norm)
        grad = tf.IndexedSlices(tmp, grad.indices, grad.dense_shape)
      else:
        grad = tf.clip_by_norm(grad, max_norm)
    clipped_grads_and_vars.append((grad, var))
  return clipped_grads_and_vars


def CombineGradients(tower_grads):
  """Calculate the combined gradient for each shared variable across all towers.

  Note that this function provides a synchronization point across all towers.

  Args:
    tower_grads: List of lists of (gradient, variable) tuples. The outer list is
      over individual gradients. The inner list is over the gradient calculation
      for each tower.

  Returns:
     List of pairs of (gradient, variable) where the gradient has been summed
     across all towers.
  """
  filtered_grads = [
      [x for x in grad_list if x[0] is not None] for grad_list in tower_grads
  ]
  final_grads = []
207
208
  for i in range(len(filtered_grads[0])):
    grads = [filtered_grads[t][i] for t in range(len(filtered_grads))]
Hye Yoon's avatar
Hye Yoon committed
209
210
211
212
213
214
215
216
    grad = tf.stack([x[0] for x in grads], 0)
    grad = tf.reduce_sum(grad, 0)
    final_grads.append((
        grad,
        filtered_grads[0][i][1],
    ))

  return final_grads
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239


def MakeYt8mExample(num_segment: int = 5) -> tf.train.SequenceExample:
  """Generate fake data for unit tests."""
  rgb = np.random.randint(low=256, size=1024, dtype=np.uint8)
  audio = np.random.randint(low=256, size=128, dtype=np.uint8)

  seq_example = tf.train.SequenceExample()
  seq_example.context.feature["id"].bytes_list.value[:] = [b"id001"]
  seq_example.context.feature["labels"].int64_list.value[:] = [1, 2, 3, 4]
  seq_example.context.feature["segment_labels"].int64_list.value[:] = (
      [4] * num_segment)
  seq_example.context.feature["segment_start_times"].int64_list.value[:] = [
      i * 5 for i in range(num_segment)
  ]
  seq_example.context.feature["segment_scores"].float_list.value[:] = (
      [0.] * num_segment)
  tfexample_utils.put_bytes_list_to_feature(
      seq_example, rgb.tobytes(), key="rgb", repeat_num=120)
  tfexample_utils.put_bytes_list_to_feature(
      seq_example, audio.tobytes(), key="audio", repeat_num=120)

  return seq_example
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266


# TODO(yeqing): Move the test related functions to test_utils.
def MakeExampleWithFloatFeatures(
    num_segment: int = 5) -> tf.train.SequenceExample:
  """Generate fake data for unit tests."""
  rgb = np.random.rand(1, 2048).astype(np.float32)
  audio = np.random.rand(256).astype(np.float32)

  seq_example = tf.train.SequenceExample()
  seq_example.context.feature["id"].bytes_list.value[:] = [b"id001"]
  seq_example.context.feature["labels"].int64_list.value[:] = [1, 2, 3, 4]
  seq_example.context.feature["segment_labels"].int64_list.value[:] = (
      [4] * num_segment)
  seq_example.context.feature["segment_start_times"].int64_list.value[:] = [
      i * 5 for i in range(num_segment)
  ]
  seq_example.context.feature["segment_scores"].float_list.value[:] = (
      [0.] * num_segment)
  seq_example.context.feature[
      "VIDEO_EMBEDDING/context_feature/floats"].float_list.value[:] = (
          audio.tolist())

  tfexample_utils.put_float_list_to_feature(
      seq_example, rgb.tolist(), key="FEATURE/feature/floats")

  return seq_example