batch_reader.py 10.1 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
# Copyright 2016 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================

"""Batch reader to seq2seq attention model, with bucketing support."""

from collections import namedtuple
from random import shuffle
from threading import Thread
import time

import numpy as np
Neal Wu's avatar
Neal Wu committed
24
from six.moves import queue as Queue
25
from six.moves import xrange
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
import tensorflow as tf

import data

ModelInput = namedtuple('ModelInput',
                        'enc_input dec_input target enc_len dec_len '
                        'origin_article origin_abstract')

BUCKET_CACHE_BATCH = 100
QUEUE_NUM_BATCH = 100


class Batcher(object):
  """Batch reader with shuffling and bucketing support."""

  def __init__(self, data_path, vocab, hps,
               article_key, abstract_key, max_article_sentences,
               max_abstract_sentences, bucketing=True, truncate_input=False):
    """Batcher constructor.

    Args:
      data_path: tf.Example filepattern.
      vocab: Vocabulary.
      hps: Seq2SeqAttention model hyperparameters.
      article_key: article feature key in tf.Example.
      abstract_key: abstract feature key in tf.Example.
      max_article_sentences: Max number of sentences used from article.
      max_abstract_sentences: Max number of sentences used from abstract.
      bucketing: Whether bucket articles of similar length into the same batch.
      truncate_input: Whether to truncate input that is too long. Alternative is
        to discard such examples.
    """
    self._data_path = data_path
    self._vocab = vocab
    self._hps = hps
    self._article_key = article_key
    self._abstract_key = abstract_key
    self._max_article_sentences = max_article_sentences
    self._max_abstract_sentences = max_abstract_sentences
    self._bucketing = bucketing
    self._truncate_input = truncate_input
    self._input_queue = Queue.Queue(QUEUE_NUM_BATCH * self._hps.batch_size)
    self._bucket_input_queue = Queue.Queue(QUEUE_NUM_BATCH)
    self._input_threads = []
    for _ in xrange(16):
      self._input_threads.append(Thread(target=self._FillInputQueue))
      self._input_threads[-1].daemon = True
      self._input_threads[-1].start()
    self._bucketing_threads = []
    for _ in xrange(4):
      self._bucketing_threads.append(Thread(target=self._FillBucketInputQueue))
      self._bucketing_threads[-1].daemon = True
      self._bucketing_threads[-1].start()

    self._watch_thread = Thread(target=self._WatchThreads)
    self._watch_thread.daemon = True
    self._watch_thread.start()

  def NextBatch(self):
    """Returns a batch of inputs for seq2seq attention model.

    Returns:
      enc_batch: A batch of encoder inputs [batch_size, hps.enc_timestamps].
      dec_batch: A batch of decoder inputs [batch_size, hps.dec_timestamps].
      target_batch: A batch of targets [batch_size, hps.dec_timestamps].
      enc_input_len: encoder input lengths of the batch.
      dec_input_len: decoder input lengths of the batch.
      loss_weights: weights for loss function, 1 if not padded, 0 if padded.
      origin_articles: original article words.
      origin_abstracts: original abstract words.
    """
    enc_batch = np.zeros(
        (self._hps.batch_size, self._hps.enc_timesteps), dtype=np.int32)
    enc_input_lens = np.zeros(
        (self._hps.batch_size), dtype=np.int32)
    dec_batch = np.zeros(
        (self._hps.batch_size, self._hps.dec_timesteps), dtype=np.int32)
    dec_output_lens = np.zeros(
        (self._hps.batch_size), dtype=np.int32)
    target_batch = np.zeros(
        (self._hps.batch_size, self._hps.dec_timesteps), dtype=np.int32)
    loss_weights = np.zeros(
        (self._hps.batch_size, self._hps.dec_timesteps), dtype=np.float32)
    origin_articles = ['None'] * self._hps.batch_size
    origin_abstracts = ['None'] * self._hps.batch_size

    buckets = self._bucket_input_queue.get()
    for i in xrange(self._hps.batch_size):
      (enc_inputs, dec_inputs, targets, enc_input_len, dec_output_len,
       article, abstract) = buckets[i]

      origin_articles[i] = article
      origin_abstracts[i] = abstract
      enc_input_lens[i] = enc_input_len
      dec_output_lens[i] = dec_output_len
      enc_batch[i, :] = enc_inputs[:]
      dec_batch[i, :] = dec_inputs[:]
      target_batch[i, :] = targets[:]
      for j in xrange(dec_output_len):
        loss_weights[i][j] = 1
    return (enc_batch, dec_batch, target_batch, enc_input_lens, dec_output_lens,
            loss_weights, origin_articles, origin_abstracts)

  def _FillInputQueue(self):
    """Fill input queue with ModelInput."""
    start_id = self._vocab.WordToId(data.SENTENCE_START)
    end_id = self._vocab.WordToId(data.SENTENCE_END)
    pad_id = self._vocab.WordToId(data.PAD_TOKEN)
    input_gen = self._TextGenerator(data.ExampleGen(self._data_path))
    while True:
      (article, abstract) = input_gen.next()
      article_sentences = [sent.strip() for sent in
                           data.ToSentences(article, include_token=False)]
      abstract_sentences = [sent.strip() for sent in
                            data.ToSentences(abstract, include_token=False)]

      enc_inputs = []
      # Use the <s> as the <GO> symbol for decoder inputs.
      dec_inputs = [start_id]

      # Convert first N sentences to word IDs, stripping existing <s> and </s>.
      for i in xrange(min(self._max_article_sentences,
                          len(article_sentences))):
        enc_inputs += data.GetWordIds(article_sentences[i], self._vocab)
      for i in xrange(min(self._max_abstract_sentences,
                          len(abstract_sentences))):
        dec_inputs += data.GetWordIds(abstract_sentences[i], self._vocab)

      # Filter out too-short input
      if (len(enc_inputs) < self._hps.min_input_len or
          len(dec_inputs) < self._hps.min_input_len):
        tf.logging.warning('Drop an example - too short.\nenc:%d\ndec:%d',
                           len(enc_inputs), len(dec_inputs))
        continue

      # If we're not truncating input, throw out too-long input
      if not self._truncate_input:
        if (len(enc_inputs) > self._hps.enc_timesteps or
            len(dec_inputs) > self._hps.dec_timesteps):
          tf.logging.warning('Drop an example - too long.\nenc:%d\ndec:%d',
                             len(enc_inputs), len(dec_inputs))
          continue
      # If we are truncating input, do so if necessary
      else:
        if len(enc_inputs) > self._hps.enc_timesteps:
          enc_inputs = enc_inputs[:self._hps.enc_timesteps]
        if len(dec_inputs) > self._hps.dec_timesteps:
          dec_inputs = dec_inputs[:self._hps.dec_timesteps]

      # targets is dec_inputs without <s> at beginning, plus </s> at end
      targets = dec_inputs[1:]
      targets.append(end_id)

      # Now len(enc_inputs) should be <= enc_timesteps, and
      # len(targets) = len(dec_inputs) should be <= dec_timesteps

      enc_input_len = len(enc_inputs)
      dec_output_len = len(targets)

      # Pad if necessary
      while len(enc_inputs) < self._hps.enc_timesteps:
        enc_inputs.append(pad_id)
      while len(dec_inputs) < self._hps.dec_timesteps:
        dec_inputs.append(end_id)
      while len(targets) < self._hps.dec_timesteps:
        targets.append(end_id)

      element = ModelInput(enc_inputs, dec_inputs, targets, enc_input_len,
                           dec_output_len, ' '.join(article_sentences),
                           ' '.join(abstract_sentences))
      self._input_queue.put(element)

  def _FillBucketInputQueue(self):
    """Fill bucketed batches into the bucket_input_queue."""
    while True:
      inputs = []
      for _ in xrange(self._hps.batch_size * BUCKET_CACHE_BATCH):
        inputs.append(self._input_queue.get())
      if self._bucketing:
        inputs = sorted(inputs, key=lambda inp: inp.enc_len)

      batches = []
      for i in xrange(0, len(inputs), self._hps.batch_size):
        batches.append(inputs[i:i+self._hps.batch_size])
      shuffle(batches)
      for b in batches:
        self._bucket_input_queue.put(b)

  def _WatchThreads(self):
    """Watch the daemon input threads and restart if dead."""
    while True:
      time.sleep(60)
      input_threads = []
      for t in self._input_threads:
        if t.is_alive():
          input_threads.append(t)
        else:
          tf.logging.error('Found input thread dead.')
          new_t = Thread(target=self._FillInputQueue)
          input_threads.append(new_t)
          input_threads[-1].daemon = True
          input_threads[-1].start()
      self._input_threads = input_threads

      bucketing_threads = []
      for t in self._bucketing_threads:
        if t.is_alive():
          bucketing_threads.append(t)
        else:
          tf.logging.error('Found bucketing thread dead.')
          new_t = Thread(target=self._FillBucketInputQueue)
          bucketing_threads.append(new_t)
          bucketing_threads[-1].daemon = True
          bucketing_threads[-1].start()
      self._bucketing_threads = bucketing_threads

  def _TextGenerator(self, example_gen):
    """Generates article and abstract text from tf.Example."""
    while True:
      e = example_gen.next()
      try:
        article_text = self._GetExFeatureText(e, self._article_key)
        abstract_text = self._GetExFeatureText(e, self._abstract_key)
      except ValueError:
        tf.logging.error('Failed to get article or abstract from example')
        continue

      yield (article_text, abstract_text)

  def _GetExFeatureText(self, ex, key):
    """Extract text for a feature from td.Example.

    Args:
      ex: tf.Example.
      key: key of the feature to be extracted.
    Returns:
      feature: a feature text extracted.
    """
    return ex.features.feature[key].bytes_list.value[0]