optimization.py 8.68 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
# Copyright 2019 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Functions and classes related to optimization (weight updates)."""

import re

19
from absl import logging
Hongkun Yu's avatar
Hongkun Yu committed
20
import gin
Hongkun Yu's avatar
Hongkun Yu committed
21
import tensorflow as tf
22
import tensorflow_addons.optimizers as tfa_optimizers
23
24
25


class WarmUp(tf.keras.optimizers.schedules.LearningRateSchedule):
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
26
  """Applies a warmup schedule on a given learning rate decay schedule."""
27

28
29
30
31
32
33
  def __init__(self,
               initial_learning_rate,
               decay_schedule_fn,
               warmup_steps,
               power=1.0,
               name=None):
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
    super(WarmUp, self).__init__()
    self.initial_learning_rate = initial_learning_rate
    self.warmup_steps = warmup_steps
    self.power = power
    self.decay_schedule_fn = decay_schedule_fn
    self.name = name

  def __call__(self, step):
    with tf.name_scope(self.name or 'WarmUp') as name:
      # Implements polynomial warmup. i.e., if global_step < warmup_steps, the
      # learning rate will be `global_step/num_warmup_steps * init_lr`.
      global_step_float = tf.cast(step, tf.float32)
      warmup_steps_float = tf.cast(self.warmup_steps, tf.float32)
      warmup_percent_done = global_step_float / warmup_steps_float
      warmup_learning_rate = (
          self.initial_learning_rate *
          tf.math.pow(warmup_percent_done, self.power))
51
52
53
54
55
      return tf.cond(
          global_step_float < warmup_steps_float,
          lambda: warmup_learning_rate,
          lambda: self.decay_schedule_fn(step),
          name=name)
56
57
58
59
60
61
62
63
64
65
66

  def get_config(self):
    return {
        'initial_learning_rate': self.initial_learning_rate,
        'decay_schedule_fn': self.decay_schedule_fn,
        'warmup_steps': self.warmup_steps,
        'power': self.power,
        'name': self.name
    }


Hongkun Yu's avatar
Hongkun Yu committed
67
@gin.configurable
68
69
70
def create_optimizer(init_lr,
                     num_train_steps,
                     num_warmup_steps,
71
                     end_lr=0.0,
72
                     optimizer_type='adamw'):
73
74
  """Creates an optimizer with learning rate schedule."""
  # Implements linear decay of the learning rate.
75
  lr_schedule = tf.keras.optimizers.schedules.PolynomialDecay(
76
77
      initial_learning_rate=init_lr,
      decay_steps=num_train_steps,
78
      end_learning_rate=end_lr)
79
  if num_warmup_steps:
80
81
82
83
    lr_schedule = WarmUp(
        initial_learning_rate=init_lr,
        decay_schedule_fn=lr_schedule,
        warmup_steps=num_warmup_steps)
84
85
86
87

  if optimizer_type == 'adamw':
    logging.info('using Adamw optimizer')
    optimizer = AdamWeightDecay(
88
        learning_rate=lr_schedule,
89
90
91
92
        weight_decay_rate=0.01,
        beta_1=0.9,
        beta_2=0.999,
        epsilon=1e-6,
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
93
        exclude_from_weight_decay=['LayerNorm', 'layer_norm', 'bias'])
94
95
96
  elif optimizer_type == 'lamb':
    logging.info('using Lamb optimizer')
    optimizer = tfa_optimizers.LAMB(
97
        learning_rate=lr_schedule,
98
99
100
101
        weight_decay_rate=0.01,
        beta_1=0.9,
        beta_2=0.999,
        epsilon=1e-6,
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
102
        exclude_from_weight_decay=['LayerNorm', 'layer_norm', 'bias'])
103
104
105
  else:
    raise ValueError('Unsupported optimizer type: ', optimizer_type)

106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
  return optimizer


class AdamWeightDecay(tf.keras.optimizers.Adam):
  """Adam enables L2 weight decay and clip_by_global_norm on gradients.

  Just adding the square of the weights to the loss function is *not* the
  correct way of using L2 regularization/weight decay with Adam, since that will
  interact with the m and v parameters in strange ways.

  Instead we want ot decay the weights in a manner that doesn't interact with
  the m/v parameters. This is equivalent to adding the square of the weights to
  the loss with plain (non-momentum) SGD.
  """

  def __init__(self,
               learning_rate=0.001,
               beta_1=0.9,
               beta_2=0.999,
               epsilon=1e-7,
               amsgrad=False,
               weight_decay_rate=0.0,
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
128
               include_in_weight_decay=None,
129
               exclude_from_weight_decay=None,
Hongkun Yu's avatar
Hongkun Yu committed
130
               gradient_clip_norm=1.0,
131
132
               name='AdamWeightDecay',
               **kwargs):
133
134
    super(AdamWeightDecay, self).__init__(learning_rate, beta_1, beta_2,
                                          epsilon, amsgrad, name, **kwargs)
135
    self.weight_decay_rate = weight_decay_rate
Hongkun Yu's avatar
Hongkun Yu committed
136
    self.gradient_clip_norm = gradient_clip_norm
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
137
    self._include_in_weight_decay = include_in_weight_decay
138
    self._exclude_from_weight_decay = exclude_from_weight_decay
Hongkun Yu's avatar
Hongkun Yu committed
139
    logging.info('gradient_clip_norm=%f', gradient_clip_norm)
140
141
142
143
144
145
146
147

  @classmethod
  def from_config(cls, config):
    """Creates an optimizer from its config with WarmUp custom object."""
    custom_objects = {'WarmUp': WarmUp}
    return super(AdamWeightDecay, cls).from_config(
        config, custom_objects=custom_objects)

148
149
150
  def _prepare_local(self, var_device, var_dtype, apply_state):
    super(AdamWeightDecay, self)._prepare_local(var_device, var_dtype,
                                                apply_state)
Scott Zhu's avatar
Scott Zhu committed
151
    apply_state[(var_device, var_dtype)]['weight_decay_rate'] = tf.constant(
152
153
154
        self.weight_decay_rate, name='adam_weight_decay_rate')

  def _decay_weights_op(self, var, learning_rate, apply_state):
155
156
157
158
    do_decay = self._do_use_weight_decay(var.name)
    if do_decay:
      return var.assign_sub(
          learning_rate * var *
Scott Zhu's avatar
Scott Zhu committed
159
          apply_state[(var.device, var.dtype.base_dtype)]['weight_decay_rate'],
160
161
162
          use_locking=self._use_locking)
    return tf.no_op()

Zongwei Zhou's avatar
Zongwei Zhou committed
163
164
165
  def apply_gradients(self,
                      grads_and_vars,
                      name=None,
166
                      experimental_aggregate_gradients=True):
167
    grads, tvars = list(zip(*grads_and_vars))
Hongkun Yu's avatar
Hongkun Yu committed
168
    if experimental_aggregate_gradients and self.gradient_clip_norm > 0.0:
169
170
171
172
173
      # when experimental_aggregate_gradients = False, apply_gradients() no
      # longer implicitly allreduce gradients, users manually allreduce gradient
      # and passed the allreduced grads_and_vars. For now, the
      # clip_by_global_norm will be moved to before the explicit allreduce to
      # keep the math the same as TF 1 and pre TF 2.2 implementation.
Zongwei Zhou's avatar
Zongwei Zhou committed
174
      (grads, _) = tf.clip_by_global_norm(grads, clip_norm=1.0)
Zongwei Zhou's avatar
Zongwei Zhou committed
175
176
177
    return super(AdamWeightDecay, self).apply_gradients(
        zip(grads, tvars),
        name=name,
178
        experimental_aggregate_gradients=experimental_aggregate_gradients)
179

180
  def _get_lr(self, var_device, var_dtype, apply_state):
181
    """Retrieves the learning rate with the given state."""
182
183
    if apply_state is None:
      return self._decayed_lr_t[var_dtype], {}
184

185
186
187
188
189
    apply_state = apply_state or {}
    coefficients = apply_state.get((var_device, var_dtype))
    if coefficients is None:
      coefficients = self._fallback_apply_state(var_device, var_dtype)
      apply_state[(var_device, var_dtype)] = coefficients
190

191
192
193
    return coefficients['lr_t'], dict(apply_state=apply_state)

  def _resource_apply_dense(self, grad, var, apply_state=None):
194
195
    lr_t, kwargs = self._get_lr(var.device, var.dtype.base_dtype, apply_state)
    decay = self._decay_weights_op(var, lr_t, apply_state)
196
    with tf.control_dependencies([decay]):
197
198
      return super(AdamWeightDecay,
                   self)._resource_apply_dense(grad, var, **kwargs)
199

200
  def _resource_apply_sparse(self, grad, var, indices, apply_state=None):
201
202
    lr_t, kwargs = self._get_lr(var.device, var.dtype.base_dtype, apply_state)
    decay = self._decay_weights_op(var, lr_t, apply_state)
203
    with tf.control_dependencies([decay]):
204
205
      return super(AdamWeightDecay,
                   self)._resource_apply_sparse(grad, var, indices, **kwargs)
206
207
208
209

  def get_config(self):
    config = super(AdamWeightDecay, self).get_config()
    config.update({
210
        'weight_decay_rate': self.weight_decay_rate,
211
212
213
214
215
    })
    return config

  def _do_use_weight_decay(self, param_name):
    """Whether to use L2 weight decay for `param_name`."""
216
217
    if self.weight_decay_rate == 0:
      return False
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
218
219
220
221
222
223

    if self._include_in_weight_decay:
      for r in self._include_in_weight_decay:
        if re.search(r, param_name) is not None:
          return True

224
225
226
227
228
    if self._exclude_from_weight_decay:
      for r in self._exclude_from_weight_decay:
        if re.search(r, param_name) is not None:
          return False
    return True