fpn.py 6.95 KB
Newer Older
Yeqing Li's avatar
Yeqing Li committed
1
# Copyright 2021 The TensorFlow Authors. All Rights Reserved.
Abdullah Rashwan's avatar
Abdullah Rashwan committed
2
3
4
5
6
7
8
9
10
11
12
13
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
Yeqing Li's avatar
Yeqing Li committed
14

Fan Yang's avatar
Fan Yang committed
15
"""Contains the definitions of Feature Pyramid Networks (FPN)."""
Fan Yang's avatar
Fan Yang committed
16
from typing import Any, Mapping, Optional
Abdullah Rashwan's avatar
Abdullah Rashwan committed
17
18
19
20
21
22
23
24
25
26

# Import libraries
import tensorflow as tf

from official.modeling import tf_utils
from official.vision.beta.ops import spatial_transform_ops


@tf.keras.utils.register_keras_serializable(package='Vision')
class FPN(tf.keras.Model):
Fan Yang's avatar
Fan Yang committed
27
28
29
30
31
32
33
34
  """Creates a Feature Pyramid Network (FPN).

  This implemets the paper:
  Tsung-Yi Lin, Piotr Dollar, Ross Girshick, Kaiming He, Bharath Hariharan, and
  Serge Belongie.
  Feature Pyramid Networks for Object Detection.
  (https://arxiv.org/pdf/1612.03144)
  """
Abdullah Rashwan's avatar
Abdullah Rashwan committed
35

Fan Yang's avatar
Fan Yang committed
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
  def __init__(
      self,
      input_specs: Mapping[str, tf.TensorShape],
      min_level: int = 3,
      max_level: int = 7,
      num_filters: int = 256,
      use_separable_conv: bool = False,
      activation: str = 'relu',
      use_sync_bn: bool = False,
      norm_momentum: float = 0.99,
      norm_epsilon: float = 0.001,
      kernel_initializer: str = 'VarianceScaling',
      kernel_regularizer: Optional[tf.keras.regularizers.Regularizer] = None,
      bias_regularizer: Optional[tf.keras.regularizers.Regularizer] = None,
      **kwargs):
Fan Yang's avatar
Fan Yang committed
51
    """Initializes a Feature Pyramid Network (FPN).
Abdullah Rashwan's avatar
Abdullah Rashwan committed
52
53

    Args:
Fan Yang's avatar
Fan Yang committed
54
      input_specs: A `dict` of input specifications. A dictionary consists of
Abdullah Rashwan's avatar
Abdullah Rashwan committed
55
        {level: TensorShape} from a backbone.
Fan Yang's avatar
Fan Yang committed
56
57
58
59
      min_level: An `int` of minimum level in FPN output feature maps.
      max_level: An `int` of maximum level in FPN output feature maps.
      num_filters: An `int` number of filters in FPN layers.
      use_separable_conv: A `bool`.  If True use separable convolution for
Abdullah Rashwan's avatar
Abdullah Rashwan committed
60
        convolution in FPN layers.
Fan Yang's avatar
Fan Yang committed
61
62
63
64
65
66
67
68
69
70
      activation: A `str` name of the activation function.
      use_sync_bn: A `bool`. If True, use synchronized batch normalization.
      norm_momentum: A `float` of normalization momentum for the moving average.
      norm_epsilon: A `float` added to variance to avoid dividing by zero.
      kernel_initializer: A `str` name of kernel_initializer for convolutional
        layers.
      kernel_regularizer: A `tf.keras.regularizers.Regularizer` object for
        Conv2D. Default is None.
      bias_regularizer: A `tf.keras.regularizers.Regularizer` object for Conv2D.
      **kwargs: Additional keyword arguments to be passed.
Abdullah Rashwan's avatar
Abdullah Rashwan committed
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
    """
    self._config_dict = {
        'input_specs': input_specs,
        'min_level': min_level,
        'max_level': max_level,
        'num_filters': num_filters,
        'use_separable_conv': use_separable_conv,
        'activation': activation,
        'use_sync_bn': use_sync_bn,
        'norm_momentum': norm_momentum,
        'norm_epsilon': norm_epsilon,
        'kernel_initializer': kernel_initializer,
        'kernel_regularizer': kernel_regularizer,
        'bias_regularizer': bias_regularizer,
    }
    if use_separable_conv:
      conv2d = tf.keras.layers.SeparableConv2D
    else:
      conv2d = tf.keras.layers.Conv2D
    if use_sync_bn:
      norm = tf.keras.layers.experimental.SyncBatchNormalization
    else:
      norm = tf.keras.layers.BatchNormalization
    activation_fn = tf.keras.layers.Activation(
        tf_utils.get_activation(activation))

    # Build input feature pyramid.
    if tf.keras.backend.image_data_format() == 'channels_last':
      bn_axis = -1
    else:
      bn_axis = 1

    # Get input feature pyramid from backbone.
    inputs = self._build_input_pyramid(input_specs, min_level)
Abdullah Rashwan's avatar
Abdullah Rashwan committed
105
    backbone_max_level = min(int(max(inputs.keys())), max_level)
Abdullah Rashwan's avatar
Abdullah Rashwan committed
106
107
108
109

    # Build lateral connections.
    feats_lateral = {}
    for level in range(min_level, backbone_max_level + 1):
Abdullah Rashwan's avatar
Abdullah Rashwan committed
110
      feats_lateral[str(level)] = conv2d(
Abdullah Rashwan's avatar
Abdullah Rashwan committed
111
112
113
114
115
116
          filters=num_filters,
          kernel_size=1,
          padding='same',
          kernel_initializer=kernel_initializer,
          kernel_regularizer=kernel_regularizer,
          bias_regularizer=bias_regularizer)(
Abdullah Rashwan's avatar
Abdullah Rashwan committed
117
              inputs[str(level)])
Abdullah Rashwan's avatar
Abdullah Rashwan committed
118
119

    # Build top-down path.
Abdullah Rashwan's avatar
Abdullah Rashwan committed
120
    feats = {str(backbone_max_level): feats_lateral[str(backbone_max_level)]}
Abdullah Rashwan's avatar
Abdullah Rashwan committed
121
    for level in range(backbone_max_level - 1, min_level - 1, -1):
Abdullah Rashwan's avatar
Abdullah Rashwan committed
122
123
      feats[str(level)] = spatial_transform_ops.nearest_upsampling(
          feats[str(level + 1)], 2) + feats_lateral[str(level)]
Abdullah Rashwan's avatar
Abdullah Rashwan committed
124
125
126
127

    # TODO(xianzhi): consider to remove bias in conv2d.
    # Build post-hoc 3x3 convolution kernel.
    for level in range(min_level, backbone_max_level + 1):
Abdullah Rashwan's avatar
Abdullah Rashwan committed
128
      feats[str(level)] = conv2d(
Abdullah Rashwan's avatar
Abdullah Rashwan committed
129
130
131
132
133
134
135
          filters=num_filters,
          strides=1,
          kernel_size=3,
          padding='same',
          kernel_initializer=kernel_initializer,
          kernel_regularizer=kernel_regularizer,
          bias_regularizer=bias_regularizer)(
Abdullah Rashwan's avatar
Abdullah Rashwan committed
136
              feats[str(level)])
Abdullah Rashwan's avatar
Abdullah Rashwan committed
137
138
139
140

    # TODO(xianzhi): consider to remove bias in conv2d.
    # Build coarser FPN levels introduced for RetinaNet.
    for level in range(backbone_max_level + 1, max_level + 1):
Abdullah Rashwan's avatar
Abdullah Rashwan committed
141
      feats_in = feats[str(level - 1)]
Abdullah Rashwan's avatar
Abdullah Rashwan committed
142
143
      if level > backbone_max_level + 1:
        feats_in = activation_fn(feats_in)
Abdullah Rashwan's avatar
Abdullah Rashwan committed
144
      feats[str(level)] = conv2d(
Abdullah Rashwan's avatar
Abdullah Rashwan committed
145
146
147
148
149
150
151
152
153
154
155
          filters=num_filters,
          strides=2,
          kernel_size=3,
          padding='same',
          kernel_initializer=kernel_initializer,
          kernel_regularizer=kernel_regularizer,
          bias_regularizer=bias_regularizer)(
              feats_in)

    # Apply batch norm layers.
    for level in range(min_level, max_level + 1):
Abdullah Rashwan's avatar
Abdullah Rashwan committed
156
      feats[str(level)] = norm(
Abdullah Rashwan's avatar
Abdullah Rashwan committed
157
          axis=bn_axis, momentum=norm_momentum, epsilon=norm_epsilon)(
Abdullah Rashwan's avatar
Abdullah Rashwan committed
158
              feats[str(level)])
Abdullah Rashwan's avatar
Abdullah Rashwan committed
159
160

    self._output_specs = {
Abdullah Rashwan's avatar
Abdullah Rashwan committed
161
        str(level): feats[str(level)].get_shape()
Abdullah Rashwan's avatar
Abdullah Rashwan committed
162
163
164
165
166
        for level in range(min_level, max_level + 1)
    }

    super(FPN, self).__init__(inputs=inputs, outputs=feats, **kwargs)

Fan Yang's avatar
Fan Yang committed
167
168
  def _build_input_pyramid(self, input_specs: Mapping[str, tf.TensorShape],
                           min_level: int):
Abdullah Rashwan's avatar
Abdullah Rashwan committed
169
    assert isinstance(input_specs, dict)
Abdullah Rashwan's avatar
Abdullah Rashwan committed
170
    if min(input_specs.keys()) > str(min_level):
Abdullah Rashwan's avatar
Abdullah Rashwan committed
171
172
173
174
175
176
177
178
      raise ValueError(
          'Backbone min level should be less or equal to FPN min level')

    inputs = {}
    for level, spec in input_specs.items():
      inputs[level] = tf.keras.Input(shape=spec[1:])
    return inputs

Fan Yang's avatar
Fan Yang committed
179
  def get_config(self) -> Mapping[str, Any]:
Abdullah Rashwan's avatar
Abdullah Rashwan committed
180
181
182
183
184
185
186
    return self._config_dict

  @classmethod
  def from_config(cls, config, custom_objects=None):
    return cls(**config)

  @property
Fan Yang's avatar
Fan Yang committed
187
  def output_specs(self) -> Mapping[str, tf.TensorShape]:
Abdullah Rashwan's avatar
Abdullah Rashwan committed
188
189
    """A dict of {level: TensorShape} pairs for the model output."""
    return self._output_specs