dataset_utils.py 5.75 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
# Copyright 2016 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Contains utilities for downloading and converting datasets."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import os
21
22
23
24
import sys
import tarfile

from six.moves import urllib
25
26
27
28
29
30
31
32
33
34
35
36
import tensorflow as tf

LABELS_FILENAME = 'labels.txt'


def int64_feature(values):
  """Returns a TF-Feature of int64s.

  Args:
    values: A scalar or list of values.

  Returns:
Derek Chow's avatar
Derek Chow committed
37
    A TF-Feature.
38
39
40
41
42
43
  """
  if not isinstance(values, (tuple, list)):
    values = [values]
  return tf.train.Feature(int64_list=tf.train.Int64List(value=values))


44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
def bytes_list_feature(values):
  """Returns a TF-Feature of list of bytes.

  Args:
    values: A string or list of strings.

  Returns:
    A TF-Feature.
  """
  return tf.train.Feature(bytes_list=tf.train.BytesList(value=values))


def float_list_feature(values):
  """Returns a TF-Feature of list of floats.

  Args:
    values: A float or list of floats.

  Returns:
    A TF-Feature.
  """
  return tf.train.Feature(float_list=tf.train.FloatList(value=values))


68
69
70
71
72
73
74
def bytes_feature(values):
  """Returns a TF-Feature of bytes.

  Args:
    values: A string.

  Returns:
Derek Chow's avatar
Derek Chow committed
75
    A TF-Feature.
76
77
78
79
  """
  return tf.train.Feature(bytes_list=tf.train.BytesList(value=[values]))


Derek Chow's avatar
Derek Chow committed
80
81
82
83
84
85
86
87
88
89
90
91
92
93
def float_feature(values):
  """Returns a TF-Feature of floats.

  Args:
    values: A scalar of list of values.

  Returns:
    A TF-Feature.
  """
  if not isinstance(values, (tuple, list)):
    values = [values]
  return tf.train.Feature(float_list=tf.train.FloatList(value=values))


94
95
96
97
98
99
100
101
102
103
def image_to_tfexample(image_data, image_format, height, width, class_id):
  return tf.train.Example(features=tf.train.Features(feature={
      'image/encoded': bytes_feature(image_data),
      'image/format': bytes_feature(image_format),
      'image/class/label': int64_feature(class_id),
      'image/height': int64_feature(height),
      'image/width': int64_feature(width),
  }))


104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
def download_and_uncompress_tarball(tarball_url, dataset_dir):
  """Downloads the `tarball_url` and uncompresses it locally.

  Args:
    tarball_url: The URL of a tarball file.
    dataset_dir: The directory where the temporary files are stored.
  """
  filename = tarball_url.split('/')[-1]
  filepath = os.path.join(dataset_dir, filename)

  def _progress(count, block_size, total_size):
    sys.stdout.write('\r>> Downloading %s %.1f%%' % (
        filename, float(count * block_size) / float(total_size) * 100.0))
    sys.stdout.flush()
  filepath, _ = urllib.request.urlretrieve(tarball_url, filepath, _progress)
  print()
  statinfo = os.stat(filepath)
  print('Successfully downloaded', filename, statinfo.st_size, 'bytes.')
  tarfile.open(filepath, 'r:gz').extractall(dataset_dir)


125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
def write_label_file(labels_to_class_names, dataset_dir,
                     filename=LABELS_FILENAME):
  """Writes a file with the list of class names.

  Args:
    labels_to_class_names: A map of (integer) labels to class names.
    dataset_dir: The directory in which the labels file should be written.
    filename: The filename where the class names are written.
  """
  labels_filename = os.path.join(dataset_dir, filename)
  with tf.gfile.Open(labels_filename, 'w') as f:
    for label in labels_to_class_names:
      class_name = labels_to_class_names[label]
      f.write('%d:%s\n' % (label, class_name))


def has_labels(dataset_dir, filename=LABELS_FILENAME):
  """Specifies whether or not the dataset directory contains a label map file.

  Args:
    dataset_dir: The directory in which the labels file is found.
    filename: The filename where the class names are written.

  Returns:
    `True` if the labels file exists and `False` otherwise.
  """
  return tf.gfile.Exists(os.path.join(dataset_dir, filename))


def read_label_file(dataset_dir, filename=LABELS_FILENAME):
  """Reads the labels file and returns a mapping from ID to class name.

  Args:
    dataset_dir: The directory in which the labels file is found.
    filename: The filename where the class names are written.

  Returns:
    A map from a label (integer) to class name.
  """
  labels_filename = os.path.join(dataset_dir, filename)
165
  with tf.gfile.Open(labels_filename, 'rb') as f:
166
    lines = f.read().decode()
167
168
169
170
171
172
173
174
  lines = lines.split('\n')
  lines = filter(None, lines)

  labels_to_class_names = {}
  for line in lines:
    index = line.index(':')
    labels_to_class_names[int(line[:index])] = line[index+1:]
  return labels_to_class_names
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199


def open_sharded_output_tfrecords(exit_stack, base_path, num_shards):
  """Opens all TFRecord shards for writing and adds them to an exit stack.

  Args:
    exit_stack: A context2.ExitStack used to automatically closed the TFRecords
      opened in this function.
    base_path: The base path for all shards
    num_shards: The number of shards

  Returns:
    The list of opened TFRecords. Position k in the list corresponds to shard k.
  """
  tf_record_output_filenames = [
      '{}-{:05d}-of-{:05d}'.format(base_path, idx, num_shards)
      for idx in range(num_shards)
  ]

  tfrecords = [
      exit_stack.enter_context(tf.python_io.TFRecordWriter(file_name))
      for file_name in tf_record_output_filenames
  ]

  return tfrecords