sentence_prediction.py 11.1 KB
Newer Older
Frederick Liu's avatar
Frederick Liu committed
1
# Copyright 2021 The TensorFlow Authors. All Rights Reserved.
2
3
4
5
6
7
8
9
10
11
12
13
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
Frederick Liu's avatar
Frederick Liu committed
14

15
"""Sentence prediction (classification) task."""
16
from typing import List, Union, Optional
17

18
from absl import logging
19
import dataclasses
20
import numpy as np
21
import orbit
22
23
from scipy import stats
from sklearn import metrics as sklearn_metrics
24
25
26
import tensorflow as tf

from official.core import base_task
27
from official.core import config_definitions as cfg
Abdullah Rashwan's avatar
Abdullah Rashwan committed
28
from official.core import task_factory
Chen Chen's avatar
Chen Chen committed
29
from official.modeling import tf_utils
Hongkun Yu's avatar
Hongkun Yu committed
30
31
from official.modeling.hyperparams import base_config
from official.nlp.configs import encoders
Chen Chen's avatar
Chen Chen committed
32
from official.nlp.data import data_loader_factory
Hongkun Yu's avatar
Hongkun Yu committed
33
from official.nlp.modeling import models
Chen Chen's avatar
Chen Chen committed
34
from official.nlp.tasks import utils
35

A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
36
37
38
39
METRIC_TYPES = frozenset(
    ['accuracy', 'matthews_corrcoef', 'pearson_spearman_corr'])


Hongkun Yu's avatar
Hongkun Yu committed
40
41
42
43
44
@dataclasses.dataclass
class ModelConfig(base_config.Config):
  """A classifier/regressor configuration."""
  num_classes: int = 0
  use_encoder_pooler: bool = False
Hongkun Yu's avatar
Hongkun Yu committed
45
  encoder: encoders.EncoderConfig = encoders.EncoderConfig()
Hongkun Yu's avatar
Hongkun Yu committed
46
47


48
49
50
@dataclasses.dataclass
class SentencePredictionConfig(cfg.TaskConfig):
  """The model config."""
Hongkun Yu's avatar
Hongkun Yu committed
51
  # At most one of `init_checkpoint` and `hub_module_url` can
52
  # be specified.
Hongkun Yu's avatar
Hongkun Yu committed
53
  init_checkpoint: str = ''
Hongkun Yu's avatar
Hongkun Yu committed
54
  init_cls_pooler: bool = False
55
  hub_module_url: str = ''
56
  metric_type: str = 'accuracy'
Hongkun Yu's avatar
Hongkun Yu committed
57
58
  # Defines the concrete model config at instantiation time.
  model: ModelConfig = ModelConfig()
59
60
61
62
  train_data: cfg.DataConfig = cfg.DataConfig()
  validation_data: cfg.DataConfig = cfg.DataConfig()


Abdullah Rashwan's avatar
Abdullah Rashwan committed
63
@task_factory.register_task_cls(SentencePredictionConfig)
64
65
66
class SentencePredictionTask(base_task.Task):
  """Task object for sentence_prediction."""

Hongkun Yu's avatar
Hongkun Yu committed
67
68
  def __init__(self, params: cfg.TaskConfig, logging_dir=None, name=None):
    super().__init__(params, logging_dir, name=name)
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
69
70
    if params.metric_type not in METRIC_TYPES:
      raise ValueError('Invalid metric_type: {}'.format(params.metric_type))
71
    self.metric_type = params.metric_type
72
73

  def build_model(self):
Hongkun Yu's avatar
Hongkun Yu committed
74
75
76
77
    if self.task_config.hub_module_url and self.task_config.init_checkpoint:
      raise ValueError('At most one of `hub_module_url` and '
                       '`init_checkpoint` can be specified.')
    if self.task_config.hub_module_url:
Chen Chen's avatar
Chen Chen committed
78
79
      encoder_network = utils.get_encoder_from_hub(
          self.task_config.hub_module_url)
80
    else:
Hongkun Yu's avatar
Hongkun Yu committed
81
82
      encoder_network = encoders.build_encoder(self.task_config.model.encoder)
    encoder_cfg = self.task_config.model.encoder.get()
Allen Wang's avatar
Allen Wang committed
83
84
85
86
87
88
89
90
91
92
93
94
95
    if self.task_config.model.encoder.type == 'xlnet':
      return models.XLNetClassifier(
          network=encoder_network,
          num_classes=self.task_config.model.num_classes,
          initializer=tf.keras.initializers.RandomNormal(
              stddev=encoder_cfg.initializer_range))
    else:
      return models.BertClassifier(
          network=encoder_network,
          num_classes=self.task_config.model.num_classes,
          initializer=tf.keras.initializers.TruncatedNormal(
              stddev=encoder_cfg.initializer_range),
          use_encoder_pooler=self.task_config.model.use_encoder_pooler)
96

97
  def build_losses(self, labels, model_outputs, aux_losses=None) -> tf.Tensor:
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
98
99
100
101
102
    if self.task_config.model.num_classes == 1:
      loss = tf.keras.losses.mean_squared_error(labels, model_outputs)
    else:
      loss = tf.keras.losses.sparse_categorical_crossentropy(
          labels, tf.cast(model_outputs, tf.float32), from_logits=True)
103
104
105

    if aux_losses:
      loss += tf.add_n(aux_losses)
Chen Chen's avatar
Chen Chen committed
106
    return tf_utils.safe_mean(loss)
107
108
109
110

  def build_inputs(self, params, input_context=None):
    """Returns tf.data.Dataset for sentence_prediction task."""
    if params.input_path == 'dummy':
Hongkun Yu's avatar
Hongkun Yu committed
111

112
113
114
115
116
117
      def dummy_data(_):
        dummy_ids = tf.zeros((1, params.seq_length), dtype=tf.int32)
        x = dict(
            input_word_ids=dummy_ids,
            input_mask=dummy_ids,
            input_type_ids=dummy_ids)
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
118
119
120
121
122
123

        if self.task_config.model.num_classes == 1:
          y = tf.zeros((1,), dtype=tf.float32)
        else:
          y = tf.zeros((1, 1), dtype=tf.int32)
        return x, y
124
125
126
127
128
129
130

      dataset = tf.data.Dataset.range(1)
      dataset = dataset.repeat()
      dataset = dataset.map(
          dummy_data, num_parallel_calls=tf.data.experimental.AUTOTUNE)
      return dataset

Chen Chen's avatar
Chen Chen committed
131
    return data_loader_factory.get_data_loader(params).load(input_context)
132
133
134

  def build_metrics(self, training=None):
    del training
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
135
136
137
138
    if self.task_config.model.num_classes == 1:
      metrics = [tf.keras.metrics.MeanSquaredError()]
    else:
      metrics = [
Hongkun Yu's avatar
Hongkun Yu committed
139
140
          tf.keras.metrics.SparseCategoricalAccuracy(name='cls_accuracy')
      ]
141
142
    return metrics

143
  def process_metrics(self, metrics, labels, model_outputs):
144
    for metric in metrics:
Hongkun Yu's avatar
Hongkun Yu committed
145
      metric.update_state(labels, model_outputs)
146

147
  def process_compiled_metrics(self, compiled_metrics, labels, model_outputs):
Hongkun Yu's avatar
Hongkun Yu committed
148
    compiled_metrics.update_state(labels, model_outputs)
149

150
151
152
153
154
155
156
157
  def validation_step(self, inputs, model: tf.keras.Model, metrics=None):
    if self.metric_type == 'accuracy':
      return super(SentencePredictionTask,
                   self).validation_step(inputs, model, metrics)
    features, labels = inputs
    outputs = self.inference_step(features, model)
    loss = self.build_losses(
        labels=labels, model_outputs=outputs, aux_losses=model.losses)
Hongkun Yu's avatar
Hongkun Yu committed
158
    logs = {self.loss: loss}
159
    if self.metric_type == 'matthews_corrcoef':
Hongkun Yu's avatar
Hongkun Yu committed
160
      logs.update({
161
          'sentence_prediction':  # Ensure one prediction along batch dimension.
162
              tf.expand_dims(tf.math.argmax(outputs, axis=1), axis=1),
163
164
          'labels':
              labels,
Hongkun Yu's avatar
Hongkun Yu committed
165
      })
166
    if self.metric_type == 'pearson_spearman_corr':
Hongkun Yu's avatar
Hongkun Yu committed
167
      logs.update({
Hongkun Yu's avatar
Hongkun Yu committed
168
          'sentence_prediction': outputs,
169
          'labels': labels,
Hongkun Yu's avatar
Hongkun Yu committed
170
171
      })
    return logs
172
173

  def aggregate_logs(self, state=None, step_outputs=None):
Hongkun Yu's avatar
Hongkun Yu committed
174
175
    if self.metric_type == 'accuracy':
      return None
176
177
178
179
180
181
182
183
184
    if state is None:
      state = {'sentence_prediction': [], 'labels': []}
    state['sentence_prediction'].append(
        np.concatenate([v.numpy() for v in step_outputs['sentence_prediction']],
                       axis=0))
    state['labels'].append(
        np.concatenate([v.numpy() for v in step_outputs['labels']], axis=0))
    return state

185
  def reduce_aggregated_logs(self, aggregated_logs, global_step=None):
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
186
187
188
    if self.metric_type == 'accuracy':
      return None
    elif self.metric_type == 'matthews_corrcoef':
189
      preds = np.concatenate(aggregated_logs['sentence_prediction'], axis=0)
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
190
      preds = np.reshape(preds, -1)
191
      labels = np.concatenate(aggregated_logs['labels'], axis=0)
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
192
      labels = np.reshape(labels, -1)
193
194
195
      return {
          self.metric_type: sklearn_metrics.matthews_corrcoef(preds, labels)
      }
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
196
    elif self.metric_type == 'pearson_spearman_corr':
197
      preds = np.concatenate(aggregated_logs['sentence_prediction'], axis=0)
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
198
      preds = np.reshape(preds, -1)
199
      labels = np.concatenate(aggregated_logs['labels'], axis=0)
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
200
      labels = np.reshape(labels, -1)
201
202
203
204
205
      pearson_corr = stats.pearsonr(preds, labels)[0]
      spearman_corr = stats.spearmanr(preds, labels)[0]
      corr_metric = (pearson_corr + spearman_corr) / 2
      return {self.metric_type: corr_metric}

206
207
  def initialize(self, model):
    """Load a pretrained checkpoint (if exists) and then train from iter 0."""
Hongkun Yu's avatar
Hongkun Yu committed
208
209
210
211
    ckpt_dir_or_file = self.task_config.init_checkpoint
    if tf.io.gfile.isdir(ckpt_dir_or_file):
      ckpt_dir_or_file = tf.train.latest_checkpoint(ckpt_dir_or_file)
    if not ckpt_dir_or_file:
212
213
214
      return

    pretrain2finetune_mapping = {
Hongkun Yu's avatar
Hongkun Yu committed
215
        'encoder': model.checkpoint_items['encoder'],
216
    }
Hongkun Yu's avatar
Hongkun Yu committed
217
    if self.task_config.init_cls_pooler:
Hongkun Yu's avatar
Hongkun Yu committed
218
      # This option is valid when use_encoder_pooler is false.
Hongkun Yu's avatar
Hongkun Yu committed
219
220
221
      pretrain2finetune_mapping[
          'next_sentence.pooler_dense'] = model.checkpoint_items[
              'sentence_prediction.pooler_dense']
222
    ckpt = tf.train.Checkpoint(**pretrain2finetune_mapping)
Hongkun Yu's avatar
Hongkun Yu committed
223
    status = ckpt.read(ckpt_dir_or_file)
224
    status.expect_partial().assert_existing_objects_matched()
Hongkun Yu's avatar
Hongkun Yu committed
225
    logging.info('Finished loading pretrained checkpoint from %s',
Hongkun Yu's avatar
Hongkun Yu committed
226
                 ckpt_dir_or_file)
227
228


229
230
231
232
233
def predict(task: SentencePredictionTask,
            params: cfg.DataConfig,
            model: tf.keras.Model,
            params_aug: Optional[cfg.DataConfig] = None,
            test_time_aug_wgt: float = 0.3) -> List[Union[int, float]]:
234
235
236
237
238
239
  """Predicts on the input data.

  Args:
    task: A `SentencePredictionTask` object.
    params: A `cfg.DataConfig` object.
    model: A keras.Model.
240
241
242
243
    params_aug: A `cfg.DataConfig` object for augmented data.
    test_time_aug_wgt: Test time augmentation weight. The prediction score will
      use (1. - test_time_aug_wgt) original prediction plus test_time_aug_wgt
      augmented prediction.
244
245
246
247
248
249
250

  Returns:
    A list of predictions with length of `num_examples`. For regression task,
      each element in the list is the predicted score; for classification task,
      each element is the predicted class id.
  """

251
252
253
  def predict_step(inputs):
    """Replicated prediction calculation."""
    x, _ = inputs
Chen Chen's avatar
Chen Chen committed
254
    example_id = x.pop('example_id')
255
    outputs = task.inference_step(x, model)
256
    return dict(example_id=example_id, predictions=outputs)
257
258

  def aggregate_fn(state, outputs):
259
    """Concatenates model's outputs."""
260
    if state is None:
Chen Chen's avatar
Chen Chen committed
261
      state = []
262

Chen Chen's avatar
Chen Chen committed
263
264
265
    for per_replica_example_id, per_replica_batch_predictions in zip(
        outputs['example_id'], outputs['predictions']):
      state.extend(zip(per_replica_example_id, per_replica_batch_predictions))
266
267
268
269
    return state

  dataset = orbit.utils.make_distributed_dataset(tf.distribute.get_strategy(),
                                                 task.build_inputs, params)
270
  outputs = utils.predict(predict_step, aggregate_fn, dataset)
Chen Chen's avatar
Chen Chen committed
271
272
273
274

  # When running on TPU POD, the order of output cannot be maintained,
  # so we need to sort by example_id.
  outputs = sorted(outputs, key=lambda x: x[0])
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
  is_regression = task.task_config.model.num_classes == 1
  if params_aug is not None:
    dataset_aug = orbit.utils.make_distributed_dataset(
        tf.distribute.get_strategy(), task.build_inputs, params_aug)
    outputs_aug = utils.predict(predict_step, aggregate_fn, dataset_aug)
    outputs_aug = sorted(outputs_aug, key=lambda x: x[0])
    if is_regression:
      return [(1. - test_time_aug_wgt) * x[1] + test_time_aug_wgt * y[1]
              for x, y in zip(outputs, outputs_aug)]
    else:
      return [
          tf.argmax(
              (1. - test_time_aug_wgt) * x[1] + test_time_aug_wgt * y[1],
              axis=-1) for x, y in zip(outputs, outputs_aug)
      ]
  if is_regression:
    return [x[1] for x in outputs]
  else:
    return [tf.argmax(x[1], axis=-1) for x in outputs]