cifarnet_preprocessing.py 5.22 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
# Copyright 2016 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
15
"""Provides utilities to preprocess images in CIFAR-10.
16
17
18
19
20
21
22
23
24

"""

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import tensorflow as tf

25
_PADDING = 4
26
27
28
29
30
31
32

slim = tf.contrib.slim


def preprocess_for_train(image,
                         output_height,
                         output_width,
33
                         padding=_PADDING,
34
35
                         add_image_summaries=True,
                         use_grayscale=False):
36
37
38
39
40
41
42
43
44
45
  """Preprocesses the given image for training.

  Note that the actual resizing scale is sampled from
    [`resize_size_min`, `resize_size_max`].

  Args:
    image: A `Tensor` representing an image of arbitrary size.
    output_height: The height of the image after preprocessing.
    output_width: The width of the image after preprocessing.
    padding: The amound of padding before and after each dimension of the image.
46
    add_image_summaries: Enable image summaries.
47
    use_grayscale: Whether to convert the image from RGB to grayscale.
48
49
50
51

  Returns:
    A preprocessed image.
  """
52
53
  if add_image_summaries:
    tf.summary.image('image', tf.expand_dims(image, 0))
54
55
56

  # Transform the image to floats.
  image = tf.to_float(image)
57
58
  if use_grayscale:
    image = tf.image.rgb_to_grayscale(image)
59
60
  if padding > 0:
    image = tf.pad(image, [[padding, padding], [padding, padding], [0, 0]])
61
  # Randomly crop a [height, width] section of the image.
62
  distorted_image = tf.random_crop(image,
63
64
65
66
67
                                   [output_height, output_width, 3])

  # Randomly flip the image horizontally.
  distorted_image = tf.image.random_flip_left_right(distorted_image)

68
69
  if add_image_summaries:
    tf.summary.image('distorted_image', tf.expand_dims(distorted_image, 0))
70

71
72
73
74
75
76
77
  # Because these operations are not commutative, consider randomizing
  # the order their operation.
  distorted_image = tf.image.random_brightness(distorted_image,
                                               max_delta=63)
  distorted_image = tf.image.random_contrast(distorted_image,
                                             lower=0.2, upper=1.8)
  # Subtract off the mean and divide by the variance of the pixels.
78
  return tf.image.per_image_standardization(distorted_image)
79
80


81
82
83
84
85
def preprocess_for_eval(image,
                        output_height,
                        output_width,
                        add_image_summaries=True,
                        use_grayscale=False):
86
87
88
89
90
91
  """Preprocesses the given image for evaluation.

  Args:
    image: A `Tensor` representing an image of arbitrary size.
    output_height: The height of the image after preprocessing.
    output_width: The width of the image after preprocessing.
92
    add_image_summaries: Enable image summaries.
93
    use_grayscale: Whether to convert the image from RGB to grayscale.
94
95
96
97

  Returns:
    A preprocessed image.
  """
98
99
  if add_image_summaries:
    tf.summary.image('image', tf.expand_dims(image, 0))
100
101
  # Transform the image to floats.
  image = tf.to_float(image)
102
103
  if use_grayscale:
    image = tf.image.rgb_to_grayscale(image)
104
105

  # Resize and crop if needed.
106
107
108
  resized_image = tf.image.resize_image_with_crop_or_pad(image,
                                                         output_width,
                                                         output_height)
109
110
  if add_image_summaries:
    tf.summary.image('resized_image', tf.expand_dims(resized_image, 0))
111
112

  # Subtract off the mean and divide by the variance of the pixels.
113
  return tf.image.per_image_standardization(resized_image)
114
115


116
117
118
119
120
121
def preprocess_image(image,
                     output_height,
                     output_width,
                     is_training=False,
                     add_image_summaries=True,
                     use_grayscale=False):
122
123
124
125
126
127
128
129
  """Preprocesses the given image.

  Args:
    image: A `Tensor` representing an image of arbitrary size.
    output_height: The height of the image after preprocessing.
    output_width: The width of the image after preprocessing.
    is_training: `True` if we're preprocessing the image for training and
      `False` otherwise.
130
    add_image_summaries: Enable image summaries.
131
    use_grayscale: Whether to convert the image from RGB to grayscale.
132
133
134
135
136

  Returns:
    A preprocessed image.
  """
  if is_training:
137
    return preprocess_for_train(
138
139
140
141
142
        image,
        output_height,
        output_width,
        add_image_summaries=add_image_summaries,
        use_grayscale=use_grayscale)
143
  else:
144
    return preprocess_for_eval(
145
146
147
148
149
        image,
        output_height,
        output_width,
        add_image_summaries=add_image_summaries,
        use_grayscale=use_grayscale)