"test/gtest-1.7.0/xcode/gtest.xcodeproj/project.pbxproj" did not exist on "32125697f271ed03209f686186c67eee2075856c"
misc.py 11.8 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
# Copyright 2019 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the 'License');
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an 'AS IS' BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Misc for Transformer."""

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

Toby Boyd's avatar
Toby Boyd committed
21
# pylint: disable=g-bad-import-order
22
from absl import flags
Toby Boyd's avatar
Toby Boyd committed
23
import tensorflow as tf
24

25
26
27
28
# TODO(tianlin) Import internal library. Remove this when some functions for
# different TF versions are fixed.
from tensorflow.python import tf2 as tf2_internal

29
30
from official.transformer.model import model_params
from official.utils.flags import core as flags_core
Toby Boyd's avatar
Toby Boyd committed
31
32
33
from official.utils.misc import keras_utils

FLAGS = flags.FLAGS
34
35

PARAMS_MAP = {
Toby Boyd's avatar
Toby Boyd committed
36
37
38
    'tiny': model_params.TINY_PARAMS,
    'base': model_params.BASE_PARAMS,
    'big': model_params.BIG_PARAMS,
39
40
41
}


42
43
44
45
46
def is_v2():
  """Returns whether it is v2."""
  return tf2_internal.enabled()


47
48
49
def get_model_params(param_set, num_gpus):
  """Gets predefined model params."""
  if num_gpus > 1:
Toby Boyd's avatar
Toby Boyd committed
50
    if param_set == 'big':
51
      return model_params.BIG_MULTI_GPU_PARAMS.copy()
Toby Boyd's avatar
Toby Boyd committed
52
    elif param_set == 'base':
53
54
      return model_params.BASE_MULTI_GPU_PARAMS.copy()
    else:
Toby Boyd's avatar
Toby Boyd committed
55
      raise ValueError('Not valid params: param_set={} num_gpus={}'.format(
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
          param_set, num_gpus))

  return PARAMS_MAP[param_set].copy()


def define_transformer_flags():
  """Add flags and flag validators for running transformer_main."""
  # Add common flags (data_dir, model_dir, train_epochs, etc.).
  flags_core.define_base()
  flags_core.define_performance(
      num_parallel_calls=True,
      inter_op=False,
      intra_op=False,
      synthetic_data=True,
      max_train_steps=False,
71
72
      dtype=True,
      loss_scale=True,
Toby Boyd's avatar
Toby Boyd committed
73
      all_reduce_alg=True,
74
75
      enable_xla=True,
      force_v2_in_keras_compile=True
76
  )
Toby Boyd's avatar
Toby Boyd committed
77
78
79
80
81
82
83
84
85
86
87
88

  # Additional performance flags
  # TODO(b/76028325): Remove when generic layout optimizer is ready.
  flags.DEFINE_boolean(
      name='enable_grappler_layout_optimizer',
      default=True,
      help='Enable Grappler layout optimizer. Currently Grappler can '
           'de-optimize fp16 graphs by forcing NCHW layout for all '
           'convolutions and batch normalizations, and this flag allows to '
           'disable it.'
  )

89
90
91
  flags_core.define_benchmark()
  flags_core.define_device(tpu=True)

Toby Boyd's avatar
Toby Boyd committed
92
  flags.DEFINE_integer(
Toby Boyd's avatar
Toby Boyd committed
93
      name='train_steps', short_name='ts', default=300000,
Toby Boyd's avatar
Toby Boyd committed
94
95
96
97
98
99
      help=flags_core.help_wrap('The number of steps used to train.'))
  flags.DEFINE_integer(
      name='steps_between_evals', short_name='sbe', default=1000,
      help=flags_core.help_wrap(
          'The Number of training steps to run between evaluations. This is '
          'used if --train_steps is defined.'))
100
101
102
  flags.DEFINE_boolean(
      name='enable_time_history', default=True,
      help='Whether to enable TimeHistory callback.')
Toby Boyd's avatar
Toby Boyd committed
103
104
105
  flags.DEFINE_boolean(
      name='enable_tensorboard', default=False,
      help='Whether to enable Tensorboard callback.')
106
107
108
  flags.DEFINE_boolean(
      name='enable_metrics_in_training', default=False,
      help='Whether to enable metrics during training.')
Toby Boyd's avatar
Toby Boyd committed
109
110
111
112
113
114
115
116
117
  flags.DEFINE_string(
      name='profile_steps', default=None,
      help='Save profiling data to model dir at given range of steps. The '
      'value must be a comma separated pair of positive integers, specifying '
      'the first and last step to profile. For example, "--profile_steps=2,4" '
      'triggers the profiler to process 3 steps, starting from the 2nd step. '
      'Note that profiler has a non-trivial performance overhead, and the '
      'output file can be gigantic if profiling many steps.')
  # Set flags from the flags_core module as 'key flags' so they're listed when
118
119
120
121
122
123
  # the '-h' flag is used. Without this line, the flags defined above are
  # only shown in the full `--helpful` help text.
  flags.adopt_module_key_flags(flags_core)

  # Add transformer-specific flags
  flags.DEFINE_enum(
Toby Boyd's avatar
Toby Boyd committed
124
      name='param_set', short_name='mp', default='big',
125
126
      enum_values=PARAMS_MAP.keys(),
      help=flags_core.help_wrap(
Toby Boyd's avatar
Toby Boyd committed
127
128
129
130
131
132
          'Parameter set to use when creating and training the model. The '
          'parameters define the input shape (batch size and max length), '
          'model configuration (size of embedding, # of hidden layers, etc.), '
          'and various other settings. The big parameter set increases the '
          'default batch size, embedding/hidden size, and filter size. For a '
          'complete list of parameters, please see model/model_params.py.'))
133
134

  flags.DEFINE_bool(
135
      name='static_batch', short_name='sb', default=False,
136
      help=flags_core.help_wrap(
Toby Boyd's avatar
Toby Boyd committed
137
138
139
140
141
142
          'Whether the batches in the dataset should have static shapes. In '
          'general, this setting should be False. Dynamic shapes allow the '
          'inputs to be grouped so that the number of padding tokens is '
          'minimized, and helps model training. In cases where the input shape '
          'must be static (e.g. running on TPU), this setting will be ignored '
          'and static batching will always be used.'))
143
144
145
146
147
148
  flags.DEFINE_integer(
      name='max_length', short_name='ml', default=256,
      help=flags_core.help_wrap(
          'Max sentence length for Transformer. Default is 256. Note: Usually '
          'it is more effective to use a smaller max length if static_batch is '
          'enabled, e.g. 64.'))
149
150
151

  # Flags for training with steps (may be used for debugging)
  flags.DEFINE_integer(
Toby Boyd's avatar
Toby Boyd committed
152
153
      name='validation_steps', short_name='vs', default=64,
      help=flags_core.help_wrap('The number of steps used in validation.'))
154
155
156

  # BLEU score computation
  flags.DEFINE_string(
Toby Boyd's avatar
Toby Boyd committed
157
      name='bleu_source', short_name='bls', default=None,
158
      help=flags_core.help_wrap(
Toby Boyd's avatar
Toby Boyd committed
159
160
161
162
          'Path to source file containing text translate when calculating the '
          'official BLEU score. Both --bleu_source and --bleu_ref must be set. '
          'Use the flag --stop_threshold to stop the script based on the '
          'uncased BLEU score.'))
163
  flags.DEFINE_string(
Toby Boyd's avatar
Toby Boyd committed
164
      name='bleu_ref', short_name='blr', default=None,
165
      help=flags_core.help_wrap(
Toby Boyd's avatar
Toby Boyd committed
166
167
168
169
          'Path to source file containing text translate when calculating the '
          'official BLEU score. Both --bleu_source and --bleu_ref must be set. '
          'Use the flag --stop_threshold to stop the script based on the '
          'uncased BLEU score.'))
170
  flags.DEFINE_string(
Toby Boyd's avatar
Toby Boyd committed
171
      name='vocab_file', short_name='vf', default=None,
172
      help=flags_core.help_wrap(
Toby Boyd's avatar
Toby Boyd committed
173
174
175
          'Path to subtoken vocabulary file. If data_download.py was used to '
          'download and encode the training data, look in the data_dir to find '
          'the vocab file.'))
176
  flags.DEFINE_string(
Toby Boyd's avatar
Toby Boyd committed
177
178
      name='mode', default='train',
      help=flags_core.help_wrap('mode: train, eval, or predict'))
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
  flags.DEFINE_bool(
      name='use_ctl',
      default=False,
      help=flags_core.help_wrap(
          'Whether the model runs with custom training loop.'))
  flags.DEFINE_bool(
      name='is_tpu_pod',
      default=False,
      help=flags_core.help_wrap('Whether the model runs on a TPU pod.'))
  flags.DEFINE_bool(
      name='use_tpu_2vm_config',
      default=False,
      help=flags_core.help_wrap(
          'Whether the model runs in 2VM mode, Headless server and unit test '
          'all use 1VM config.'))
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
  flags.DEFINE_integer(
      name='decode_batch_size',
      default=32,
      help=flags_core.help_wrap(
          'Global batch size used for Transformer autoregressive decoding on '
          'TPU.'))
  flags.DEFINE_integer(
      name='decode_max_length',
      default=97,
      help=flags_core.help_wrap(
          'Max sequence length of the decode/eval data. This is used by '
          'Transformer autoregressive decoding on TPU to have minimum '
          'paddings.'))
  flags.DEFINE_bool(
      name='padded_decode',
      default=False,
      help=flags_core.help_wrap(
          'Whether the autoregressive decoding runs with input data padded to '
          'the decode_max_length. For TPU/XLA-GPU runs, this flag has to be '
          'set due the static shape requirement. Although CPU/GPU could also '
          'use padded_decode, it has not been tested. In addition, this method '
          'will introduce unnecessary overheads which grow quadratically with '
          'the max sequence length.'))
217

Toby Boyd's avatar
Toby Boyd committed
218
219
  flags_core.set_defaults(data_dir='/tmp/translate_ende',
                          model_dir='/tmp/transformer_model',
220
221
222
223
224
                          batch_size=None,
                          train_epochs=10)

  # pylint: disable=unused-variable
  @flags.multi_flags_validator(
Toby Boyd's avatar
Toby Boyd committed
225
226
      ['mode', 'train_epochs'],
      message='--train_epochs must be defined in train mode')
227
  def _check_train_limits(flag_dict):
Toby Boyd's avatar
Toby Boyd committed
228
229
    if flag_dict['mode'] == 'train':
      return flag_dict['train_epochs'] is not None
230
231
232
    return True

  @flags.multi_flags_validator(
Toby Boyd's avatar
Toby Boyd committed
233
234
      ['bleu_source', 'bleu_ref'],
      message='Both or neither --bleu_source and --bleu_ref must be defined.')
235
  def _check_bleu_files(flags_dict):
Toby Boyd's avatar
Toby Boyd committed
236
237
    return (flags_dict['bleu_source'] is None) == (
        flags_dict['bleu_ref'] is None)
238
239

  @flags.multi_flags_validator(
Toby Boyd's avatar
Toby Boyd committed
240
241
242
      ['bleu_source', 'bleu_ref', 'vocab_file'],
      message='--vocab_file must be defined if --bleu_source and --bleu_ref '
              'are defined.')
243
  def _check_bleu_vocab_file(flags_dict):
Toby Boyd's avatar
Toby Boyd committed
244
245
    if flags_dict['bleu_source'] and flags_dict['bleu_ref']:
      return flags_dict['vocab_file'] is not None
246
247
248
    return True

  @flags.multi_flags_validator(
Toby Boyd's avatar
Toby Boyd committed
249
250
      ['export_dir', 'vocab_file'],
      message='--vocab_file must be defined if --export_dir is set.')
251
  def _check_export_vocab_file(flags_dict):
Toby Boyd's avatar
Toby Boyd committed
252
253
    if flags_dict['export_dir']:
      return flags_dict['vocab_file'] is not None
254
255
256
    return True
  # pylint: enable=unused-variable

Toby Boyd's avatar
Toby Boyd committed
257
258
259
260

def get_callbacks():
  """Returns common callbacks."""
  callbacks = []
261
262
263
  if FLAGS.enable_time_history:
    time_callback = keras_utils.TimeHistory(FLAGS.batch_size, FLAGS.log_steps)
    callbacks.append(time_callback)
Toby Boyd's avatar
Toby Boyd committed
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312

  if FLAGS.enable_tensorboard:
    tensorboard_callback = tf.keras.callbacks.TensorBoard(
        log_dir=FLAGS.model_dir)
    callbacks.append(tensorboard_callback)

  if FLAGS.profile_steps:
    profiler_callback = keras_utils.get_profiler_callback(
        FLAGS.model_dir,
        FLAGS.profile_steps,
        FLAGS.enable_tensorboard)
    callbacks.append(profiler_callback)

  return callbacks


def build_stats(history, callbacks):
  """Normalizes and returns dictionary of stats.

  Args:
    history: Results of the training step.
    callbacks: a list of callbacks which might include a time history callback
      used during keras.fit.

  Returns:
    Dictionary of normalized results.
  """
  stats = {}

  if history and history.history:
    train_hist = history.history
    # Gets final loss from training.
    stats['loss'] = train_hist['loss'][-1].item()

  if not callbacks:
    return stats

  # Look for the time history callback which was used during keras.fit
  for callback in callbacks:
    if isinstance(callback, keras_utils.TimeHistory):
      timestamp_log = callback.timestamp_log
      stats['step_timestamp_log'] = timestamp_log
      stats['train_finish_time'] = callback.train_finish_time
      if len(timestamp_log) > 1:
        stats['avg_exp_per_second'] = (
            callback.batch_size * callback.log_steps *
            (len(callback.timestamp_log)-1) /
            (timestamp_log[-1].timestamp - timestamp_log[0].timestamp))
  return stats