spatial_transformer.py 7.33 KB
Newer Older
David Dao's avatar
David Dao committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
# Copyright 2016 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
import tensorflow as tf

def transformer(U, theta, downsample_factor=1, name='SpatialTransformer', **kwargs):
    """Spatial Transformer Layer
    
    Implements a spatial transformer layer as described in [1]_.
    Based on [2]_ and edited by David Dao for Tensorflow.
    
    Parameters
    ----------
    U : float 
        The output of a convolutional net should have the
        shape [num_batch, height, width, num_channels]. 
    theta: float   
        The output of the
        localisation network should be [num_batch, 6].
    downsample_factor : float
        A value of 1 will keep the original size of the image
        Values larger than 1 will downsample the image. 
        Values below 1 will upsample the image
        example image: height = 100, width = 200
        downsample_factor = 2
        output image will then be 50, 100
        
    References
    ----------
    .. [1]  Spatial Transformer Networks
            Max Jaderberg, Karen Simonyan, Andrew Zisserman, Koray Kavukcuoglu
            Submitted on 5 Jun 2015
    .. [2]  https://github.com/skaae/transformer_network/blob/master/transformerlayer.py
            
    Notes
    -----
    To initialize the network to the identity transform init
    ``theta`` to :
        identity = np.array([[1., 0., 0.],
                             [0., 1., 0.]]) 
        identity = identity.flatten()
        theta = tf.Variable(initial_value=identity)
        
    """
    
    def _repeat(x, n_repeats):
        with tf.variable_scope('_repeat'):
            rep = tf.transpose(tf.expand_dims(tf.ones(shape=tf.pack([n_repeats,])),1),[1,0])
            rep = tf.cast(rep, 'int32')
            x = tf.matmul(tf.reshape(x,(-1, 1)), rep)
            return tf.reshape(x,[-1])

    def _interpolate(im, x, y, downsample_factor):
        with tf.variable_scope('_interpolate'):
            # constants
            num_batch = tf.shape(im)[0]
            height = tf.shape(im)[1]
            width = tf.shape(im)[2]
            channels = tf.shape(im)[3]

            x = tf.cast(x, 'float32')
            y = tf.cast(y, 'float32')
            height_f = tf.cast(height, 'float32')
            width_f = tf.cast(width, 'float32')
            out_height = tf.cast(height_f // downsample_factor, 'int32')
            out_width = tf.cast(width_f // downsample_factor, 'int32')
            zero = tf.zeros([], dtype='int32')
            max_y = tf.cast(tf.shape(im)[1] - 1, 'int32')
            max_x = tf.cast(tf.shape(im)[2] - 1, 'int32')

            # scale indices from [-1, 1] to [0, width/height]
            x = (x + 1.0)*(width_f) / 2.0 
            y = (y + 1.0)*(height_f) / 2.0

            # do sampling
            x0 = tf.cast(tf.floor(x), 'int32')
            x1 = x0 + 1
            y0 = tf.cast(tf.floor(y), 'int32')
            y1 = y0 + 1

            x0 = tf.clip_by_value(x0, zero, max_x)
            x1 = tf.clip_by_value(x1, zero, max_x)
            y0 = tf.clip_by_value(y0, zero, max_y)
            y1 = tf.clip_by_value(y1, zero, max_y)
            dim2 = width
            dim1 = width*height
            base = _repeat(tf.range(num_batch)*dim1, out_height*out_width)
            base_y0 = base + y0*dim2
            base_y1 = base + y1*dim2
            idx_a = base_y0 + x0
            idx_b = base_y1 + x0
            idx_c = base_y0 + x1
            idx_d = base_y1 + x1

            # use indices to lookup pixels in the flat image and restore channels dim
            im_flat = tf.reshape(im,tf.pack([-1, channels]))
            im_flat = tf.cast(im_flat, 'float32')
            Ia = tf.gather(im_flat, idx_a)
            Ib = tf.gather(im_flat, idx_b)
            Ic = tf.gather(im_flat, idx_c)
            Id = tf.gather(im_flat, idx_d)

            # and finally calculate interpolated values
            x0_f = tf.cast(x0, 'float32')
            x1_f = tf.cast(x1, 'float32')
            y0_f = tf.cast(y0, 'float32')
            y1_f = tf.cast(y1, 'float32')
            wa = tf.expand_dims(((x1_f-x) * (y1_f-y)),1)
            wb = tf.expand_dims(((x1_f-x) * (y-y0_f)),1)
            wc = tf.expand_dims(((x-x0_f) * (y1_f-y)),1)
            wd = tf.expand_dims(((x-x0_f) * (y-y0_f)),1)
            output = tf.add_n([wa*Ia, wb*Ib, wc*Ic, wd*Id])
            return output
    
    def _meshgrid(height, width):
        with tf.variable_scope('_meshgrid'):
            # This should be equivalent to:
            #  x_t, y_t = np.meshgrid(np.linspace(-1, 1, width),
            #                         np.linspace(-1, 1, height))
            #  ones = np.ones(np.prod(x_t.shape))
            #  grid = np.vstack([x_t.flatten(), y_t.flatten(), ones])
            x_t = tf.matmul(tf.ones(shape=tf.pack([height, 1])),
                        tf.transpose(tf.expand_dims(tf.linspace(-1.0, 1.0, width),1),[1,0])) 
            y_t = tf.matmul(tf.expand_dims(tf.linspace(-1.0, 1.0, height),1),
                        tf.ones(shape=tf.pack([1, width]))) 

            x_t_flat = tf.reshape(x_t,(1, -1))
            y_t_flat = tf.reshape(y_t,(1, -1))

            ones = tf.ones_like(x_t_flat)
            grid = tf.concat(0, [x_t_flat, y_t_flat, ones])
            return grid

    def _transform(theta, input_dim, downsample_factor):
        with tf.variable_scope('_transform'):
            num_batch = tf.shape(input_dim)[0]
            height = tf.shape(input_dim)[1]
            width = tf.shape(input_dim)[2]            
            num_channels = tf.shape(input_dim)[3]
            theta = tf.reshape(theta, (-1, 2, 3))
            theta = tf.cast(theta, 'float32')

            # grid of (x_t, y_t, 1), eq (1) in ref [1]
            height_f = tf.cast(height, 'float32')
            width_f = tf.cast(width, 'float32')
            out_height = tf.cast(height_f // downsample_factor, 'int32')
            out_width = tf.cast(width_f // downsample_factor, 'int32')
            grid = _meshgrid(out_height, out_width)
            grid = tf.expand_dims(grid,0)
            grid = tf.reshape(grid,[-1])
            grid = tf.tile(grid,tf.pack([num_batch]))
            grid = tf.reshape(grid,tf.pack([num_batch, 3, -1])) 
            
            # Transform A x (x_t, y_t, 1)^T -> (x_s, y_s)
            T_g = tf.batch_matmul(theta, grid)
            x_s = tf.slice(T_g, [0,0,0], [-1,1,-1])
            y_s = tf.slice(T_g, [0,1,0], [-1,1,-1])
            x_s_flat = tf.reshape(x_s,[-1])
            y_s_flat = tf.reshape(y_s,[-1])

            input_transformed = _interpolate(
                  input_dim, x_s_flat, y_s_flat,
                  downsample_factor)

            output = tf.reshape(input_transformed, tf.pack([num_batch, out_height, out_width, num_channels]))
            return output
    
    with tf.variable_scope(name):
        output = _transform(theta, U, downsample_factor)
        return output