data_download.py 14.8 KB
Newer Older
Katherine Wu's avatar
Katherine Wu committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
# Copyright 2018 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Download and preprocess WMT17 ende training and evaluation datasets."""

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import os
import random
import tarfile

# pylint: disable=g-bad-import-order
import six
27
28
29
from six.moves import urllib
from absl import app as absl_app
from absl import flags
30
31
from absl import logging
import tensorflow.compat.v1 as tf
Katherine Wu's avatar
Katherine Wu committed
32
33
34
# pylint: enable=g-bad-import-order

from official.transformer.utils import tokenizer
35
from official.utils.flags import core as flags_core
Katherine Wu's avatar
Katherine Wu committed
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72

# Data sources for training/evaluating the transformer translation model.
# If any of the training sources are changed, then either:
#   1) use the flag `--search` to find the best min count or
#   2) update the _TRAIN_DATA_MIN_COUNT constant.
# min_count is the minimum number of times a token must appear in the data
# before it is added to the vocabulary. "Best min count" refers to the value
# that generates a vocabulary set that is closest in size to _TARGET_VOCAB_SIZE.
_TRAIN_DATA_SOURCES = [
    {
        "url": "http://data.statmt.org/wmt17/translation-task/"
               "training-parallel-nc-v12.tgz",
        "input": "news-commentary-v12.de-en.en",
        "target": "news-commentary-v12.de-en.de",
    },
    {
        "url": "http://www.statmt.org/wmt13/training-parallel-commoncrawl.tgz",
        "input": "commoncrawl.de-en.en",
        "target": "commoncrawl.de-en.de",
    },
    {
        "url": "http://www.statmt.org/wmt13/training-parallel-europarl-v7.tgz",
        "input": "europarl-v7.de-en.en",
        "target": "europarl-v7.de-en.de",
    },
]
# Use pre-defined minimum count to generate subtoken vocabulary.
_TRAIN_DATA_MIN_COUNT = 6

_EVAL_DATA_SOURCES = [
    {
        "url": "http://data.statmt.org/wmt17/translation-task/dev.tgz",
        "input": "newstest2013.en",
        "target": "newstest2013.de",
    }
]

73
74
75
76
77
78
79
80
81
_TEST_DATA_SOURCES = [
    {
        "url": ("https://storage.googleapis.com/tf-perf-public/"
                "official_transformer/test_data/newstest2014.tgz"),
        "input": "newstest2014.en",
        "target": "newstest2014.de",
    }
]

Katherine Wu's avatar
Katherine Wu committed
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
# Vocabulary constants
_TARGET_VOCAB_SIZE = 32768  # Number of subtokens in the vocabulary list.
_TARGET_THRESHOLD = 327  # Accept vocabulary if size is within this threshold
VOCAB_FILE = "vocab.ende.%d" % _TARGET_VOCAB_SIZE

# Strings to inclue in the generated files.
_PREFIX = "wmt32k"
_TRAIN_TAG = "train"
_EVAL_TAG = "dev"  # Following WMT and Tensor2Tensor conventions, in which the
                   # evaluation datasets are tagged as "dev" for development.

# Number of files to split train and evaluation data
_TRAIN_SHARDS = 100
_EVAL_SHARDS = 1


def find_file(path, filename, max_depth=5):
  """Returns full filepath if the file is in path or a subdirectory."""
  for root, dirs, files in os.walk(path):
    if filename in files:
      return os.path.join(root, filename)

    # Don't search past max_depth
    depth = root[len(path) + 1:].count(os.sep)
    if depth > max_depth:
      del dirs[:]  # Clear dirs
  return None


###############################################################################
# Download and extraction functions
###############################################################################
def get_raw_files(raw_dir, data_source):
  """Return raw files from source. Downloads/extracts if needed.

  Args:
    raw_dir: string directory to store raw files
    data_source: dictionary with
      {"url": url of compressed dataset containing input and target files
       "input": file with data in input language
       "target": file with data in target language}

  Returns:
    dictionary with
      {"inputs": list of files containing data in input language
       "targets": list of files containing corresponding data in target language
      }
  """
  raw_files = {
      "inputs": [],
      "targets": [],
  }  # keys
  for d in data_source:
    input_file, target_file = download_and_extract(
        raw_dir, d["url"], d["input"], d["target"])
    raw_files["inputs"].append(input_file)
    raw_files["targets"].append(target_file)
  return raw_files


def download_report_hook(count, block_size, total_size):
  """Report hook for download progress.

  Args:
    count: current block number
    block_size: block size
    total_size: total size
  """
  percent = int(count * block_size * 100 / total_size)
  print("\r%d%%" % percent + " completed", end="\r")


def download_from_url(path, url):
  """Download content from a url.

  Args:
    path: string directory where file will be downloaded
    url: string url

  Returns:
    Full path to downloaded file
  """
  filename = url.split("/")[-1]
  found_file = find_file(path, filename, max_depth=0)
  if found_file is None:
    filename = os.path.join(path, filename)
168
    logging.info("Downloading from %s to %s." % (url, filename))
Katherine Wu's avatar
Katherine Wu committed
169
    inprogress_filepath = filename + ".incomplete"
170
    inprogress_filepath, _ = urllib.request.urlretrieve(
Katherine Wu's avatar
Katherine Wu committed
171
172
173
174
175
176
        url, inprogress_filepath, reporthook=download_report_hook)
    # Print newline to clear the carriage return from the download progress.
    print()
    tf.gfile.Rename(inprogress_filepath, filename)
    return filename
  else:
177
    logging.info("Already downloaded: %s (at %s)." % (url, found_file))
Katherine Wu's avatar
Katherine Wu committed
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
    return found_file


def download_and_extract(path, url, input_filename, target_filename):
  """Extract files from downloaded compressed archive file.

  Args:
    path: string directory where the files will be downloaded
    url: url containing the compressed input and target files
    input_filename: name of file containing data in source language
    target_filename: name of file containing data in target language

  Returns:
    Full paths to extracted input and target files.

  Raises:
    OSError: if the the download/extraction fails.
  """
  # Check if extracted files already exist in path
  input_file = find_file(path, input_filename)
  target_file = find_file(path, target_filename)
  if input_file and target_file:
200
    logging.info("Already downloaded and extracted %s." % url)
Katherine Wu's avatar
Katherine Wu committed
201
202
203
204
205
206
    return input_file, target_file

  # Download archive file if it doesn't already exist.
  compressed_file = download_from_url(path, url)

  # Extract compressed files
207
  logging.info("Extracting %s." % compressed_file)
Katherine Wu's avatar
Katherine Wu committed
208
209
210
  with tarfile.open(compressed_file, "r:gz") as corpus_tar:
    corpus_tar.extractall(path)

211
  # Return file paths of the requested files.
Katherine Wu's avatar
Katherine Wu committed
212
213
214
215
216
217
218
219
220
221
222
223
  input_file = find_file(path, input_filename)
  target_file = find_file(path, target_filename)

  if input_file and target_file:
    return input_file, target_file

  raise OSError("Download/extraction failed for url %s to path %s" %
                (url, path))


def txt_line_iterator(path):
  """Iterate through lines of file."""
224
  with tf.io.gfile.GFile(path) as f:
Katherine Wu's avatar
Katherine Wu committed
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
    for line in f:
      yield line.strip()


def compile_files(raw_dir, raw_files, tag):
  """Compile raw files into a single file for each language.

  Args:
    raw_dir: Directory containing downloaded raw files.
    raw_files: Dict containing filenames of input and target data.
      {"inputs": list of files containing data in input language
       "targets": list of files containing corresponding data in target language
      }
    tag: String to append to the compiled filename.

  Returns:
    Full path of compiled input and target files.
  """
243
  logging.info("Compiling files with tag %s." % tag)
Katherine Wu's avatar
Katherine Wu committed
244
245
246
247
  filename = "%s-%s" % (_PREFIX, tag)
  input_compiled_file = os.path.join(raw_dir, filename + ".lang1")
  target_compiled_file = os.path.join(raw_dir, filename + ".lang2")

248
249
  with tf.io.gfile.GFile(input_compiled_file, mode="w") as input_writer:
    with tf.io.gfile.GFile(target_compiled_file, mode="w") as target_writer:
Katherine Wu's avatar
Katherine Wu committed
250
251
252
253
      for i in range(len(raw_files["inputs"])):
        input_file = raw_files["inputs"][i]
        target_file = raw_files["targets"][i]

254
        logging.info("Reading files %s and %s." % (input_file, target_file))
Katherine Wu's avatar
Katherine Wu committed
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
        write_file(input_writer, input_file)
        write_file(target_writer, target_file)
  return input_compiled_file, target_compiled_file


def write_file(writer, filename):
  """Write all of lines from file using the writer."""
  for line in txt_line_iterator(filename):
    writer.write(line)
    writer.write("\n")


###############################################################################
# Data preprocessing
###############################################################################
def encode_and_save_files(
    subtokenizer, data_dir, raw_files, tag, total_shards):
  """Save data from files as encoded Examples in TFrecord format.

  Args:
    subtokenizer: Subtokenizer object that will be used to encode the strings.
    data_dir: The directory in which to write the examples
    raw_files: A tuple of (input, target) data files. Each line in the input and
      the corresponding line in target file will be saved in a tf.Example.
    tag: String that will be added onto the file names.
    total_shards: Number of files to divide the data into.

  Returns:
    List of all files produced.
  """
  # Create a file for each shard.
  filepaths = [shard_filename(data_dir, tag, n + 1, total_shards)
               for n in range(total_shards)]

  if all_exist(filepaths):
290
    logging.info("Files with tag %s already exist." % tag)
Katherine Wu's avatar
Katherine Wu committed
291
292
    return filepaths

293
  logging.info("Saving files with tag %s." % tag)
Katherine Wu's avatar
Katherine Wu committed
294
295
296
297
298
299
300
301
302
303
  input_file = raw_files[0]
  target_file = raw_files[1]

  # Write examples to each shard in round robin order.
  tmp_filepaths = [fname + ".incomplete" for fname in filepaths]
  writers = [tf.python_io.TFRecordWriter(fname) for fname in tmp_filepaths]
  counter, shard = 0, 0
  for counter, (input_line, target_line) in enumerate(zip(
      txt_line_iterator(input_file), txt_line_iterator(target_file))):
    if counter > 0 and counter % 100000 == 0:
304
      logging.info("\tSaving case %d." % counter)
Katherine Wu's avatar
Katherine Wu committed
305
306
307
308
309
310
311
312
313
314
315
    example = dict_to_example(
        {"inputs": subtokenizer.encode(input_line, add_eos=True),
         "targets": subtokenizer.encode(target_line, add_eos=True)})
    writers[shard].write(example.SerializeToString())
    shard = (shard + 1) % total_shards
  for writer in writers:
    writer.close()

  for tmp_name, final_name in zip(tmp_filepaths, filepaths):
    tf.gfile.Rename(tmp_name, final_name)

316
  logging.info("Saved %d Examples", counter + 1)
Katherine Wu's avatar
Katherine Wu committed
317
318
319
320
321
322
323
324
325
326
327
  return filepaths


def shard_filename(path, tag, shard_num, total_shards):
  """Create filename for data shard."""
  return os.path.join(
      path, "%s-%s-%.5d-of-%.5d" % (_PREFIX, tag, shard_num, total_shards))


def shuffle_records(fname):
  """Shuffle records in a single file."""
328
  logging.info("Shuffling records in file %s" % fname)
Katherine Wu's avatar
Katherine Wu committed
329
330
331
332
333

  # Rename file prior to shuffling
  tmp_fname = fname + ".unshuffled"
  tf.gfile.Rename(fname, tmp_fname)

334
  reader = tf.compat.v1.io.tf_record_iterator(tmp_fname)
Katherine Wu's avatar
Katherine Wu committed
335
336
337
338
  records = []
  for record in reader:
    records.append(record)
    if len(records) % 100000 == 0:
339
      logging.info("\tRead: %d", len(records))
Katherine Wu's avatar
Katherine Wu committed
340
341
342
343
344
345
346
347

  random.shuffle(records)

  # Write shuffled records to original file name
  with tf.python_io.TFRecordWriter(fname) as w:
    for count, record in enumerate(records):
      w.write(record)
      if count > 0 and count % 100000 == 0:
348
        logging.info("\tWriting record: %d" % count)
Katherine Wu's avatar
Katherine Wu committed
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370

  tf.gfile.Remove(tmp_fname)


def dict_to_example(dictionary):
  """Converts a dictionary of string->int to a tf.Example."""
  features = {}
  for k, v in six.iteritems(dictionary):
    features[k] = tf.train.Feature(int64_list=tf.train.Int64List(value=v))
  return tf.train.Example(features=tf.train.Features(feature=features))


def all_exist(filepaths):
  """Returns true if all files in the list exist."""
  for fname in filepaths:
    if not tf.gfile.Exists(fname):
      return False
  return True


def make_dir(path):
  if not tf.gfile.Exists(path):
371
    logging.info("Creating directory %s" % path)
Katherine Wu's avatar
Katherine Wu committed
372
373
374
375
376
377
378
379
    tf.gfile.MakeDirs(path)


def main(unused_argv):
  """Obtain training and evaluation data for the Transformer model."""
  make_dir(FLAGS.raw_dir)
  make_dir(FLAGS.data_dir)

380
  # Download test_data
381
  logging.info("Step 1/5: Downloading test data")
382
383
  train_files = get_raw_files(FLAGS.data_dir, _TEST_DATA_SOURCES)

Katherine Wu's avatar
Katherine Wu committed
384
  # Get paths of download/extracted training and evaluation files.
385
  logging.info("Step 2/5: Downloading data from source")
Katherine Wu's avatar
Katherine Wu committed
386
387
388
389
  train_files = get_raw_files(FLAGS.raw_dir, _TRAIN_DATA_SOURCES)
  eval_files = get_raw_files(FLAGS.raw_dir, _EVAL_DATA_SOURCES)

  # Create subtokenizer based on the training files.
390
  logging.info("Step 3/5: Creating subtokenizer and building vocabulary")
Katherine Wu's avatar
Katherine Wu committed
391
392
393
394
395
396
  train_files_flat = train_files["inputs"] + train_files["targets"]
  vocab_file = os.path.join(FLAGS.data_dir, VOCAB_FILE)
  subtokenizer = tokenizer.Subtokenizer.init_from_files(
      vocab_file, train_files_flat, _TARGET_VOCAB_SIZE, _TARGET_THRESHOLD,
      min_count=None if FLAGS.search else _TRAIN_DATA_MIN_COUNT)

397
  logging.info("Step 4/5: Compiling training and evaluation data")
Katherine Wu's avatar
Katherine Wu committed
398
399
400
401
  compiled_train_files = compile_files(FLAGS.raw_dir, train_files, _TRAIN_TAG)
  compiled_eval_files = compile_files(FLAGS.raw_dir, eval_files, _EVAL_TAG)

  # Tokenize and save data as Examples in the TFRecord format.
402
  logging.info("Step 5/5: Preprocessing and saving data")
Katherine Wu's avatar
Katherine Wu committed
403
404
405
406
407
408
409
410
411
412
413
  train_tfrecord_files = encode_and_save_files(
      subtokenizer, FLAGS.data_dir, compiled_train_files, _TRAIN_TAG,
      _TRAIN_SHARDS)
  encode_and_save_files(
      subtokenizer, FLAGS.data_dir, compiled_eval_files, _EVAL_TAG,
      _EVAL_SHARDS)

  for fname in train_tfrecord_files:
    shuffle_records(fname)


414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
def define_data_download_flags():
  """Add flags specifying data download arguments."""
  flags.DEFINE_string(
      name="data_dir", short_name="dd", default="/tmp/translate_ende",
      help=flags_core.help_wrap(
          "Directory for where the translate_ende_wmt32k dataset is saved."))
  flags.DEFINE_string(
      name="raw_dir", short_name="rd", default="/tmp/translate_ende_raw",
      help=flags_core.help_wrap(
          "Path where the raw data will be downloaded and extracted."))
  flags.DEFINE_bool(
      name="search", default=False,
      help=flags_core.help_wrap(
          "If set, use binary search to find the vocabulary set with size"
          "closest to the target size (%d)." % _TARGET_VOCAB_SIZE))


Katherine Wu's avatar
Katherine Wu committed
431
if __name__ == "__main__":
432
  logging.set_verbosity(logging.INFO)
433
434
435
  define_data_download_flags()
  FLAGS = flags.FLAGS
  absl_app.run(main)