prado_model.py 10.3 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
# Copyright 2020 The TensorFlow Authors All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Tensorflow graph creator for PRADO model."""

import collections
import functools

from typing import Mapping, Dict, Any
from absl import logging
import tensorflow.compat.v1 as tf

from prado import common_layer # import sequence_projection module
from tf_ops import sequence_string_projection_op as ssp # import sequence_projection module

_NGRAM_INFO = [
    {
        "name": "unigram",
        "padding": 0,
        "kernel_size": [1, 1],
        "mask": None
    },
    {
        "name": "bigram",
        "padding": 1,
        "kernel_size": [2, 1],
        "mask": None
    },
    {
        "name": "trigram",
        "padding": 2,
        "kernel_size": [3, 1],
        "mask": None
    },
    {
        "name": "bigramskip1",
        "padding": 2,
        "kernel_size": [3, 1],
        "mask": [[[[1]]], [[[0]]], [[[1]]]]
    },
    {
        "name": "bigramskip2",
        "padding": 3,
        "kernel_size": [4, 1],
        "mask": [[[[1]]], [[[0]]], [[[0]]], [[[1]]]]
    },
    {
        "name": "fourgram",
        "padding": 3,
        "kernel_size": [4, 1],
        "mask": None
    },
    {
        "name": "fivegram",
        "padding": 4,
        "kernel_size": [5, 1],
        "mask": None
    },
]


def _get_params(model_config, varname, default_value=None):
  value = model_config[varname] if varname in model_config else default_value
  logging.info("%s = %s", varname, value)
  return value


def create_projection(model_config, mode, inputs):
  """Create projection."""
  feature_size = _get_params(model_config, "feature_size")
  text_distortion_probability = _get_params(model_config,
                                            "text_distortion_probability", 0.0)
  max_seq_len = _get_params(model_config, "max_seq_len", 0)
  add_eos_tag = _get_params(model_config, "add_eos_tag")
  is_training = mode == tf.estimator.ModeKeys.TRAIN
  distortion_probability = text_distortion_probability if is_training else 0.0
  raw_string = tf.identity(inputs, "Input")
  features, _, seq_length = ssp.sequence_string_projection(
      input=raw_string,
      feature_size=feature_size,
      max_splits=max_seq_len - 1,
      distortion_probability=distortion_probability,
      split_on_space=True,
      add_eos_tag=add_eos_tag,
      vocabulary="")

  if mode != tf.estimator.ModeKeys.PREDICT and max_seq_len > 0:
    pad_value = [[0, 0], [0, max_seq_len - tf.shape(features)[1]], [0, 0]]
    features = tf.pad(features, pad_value)
    batch_size = inputs.get_shape().as_list()[0]
    features = tf.reshape(features,
                          [batch_size, max_seq_len, feature_size])
  return features, seq_length


def _fully_connected(pod_layers, tensor, num_features, mode, bsz, keep_prob):
  """Fully connected layer."""
  tensor_out = pod_layers.fully_connected(tensor, num_features)
  if mode == tf.estimator.ModeKeys.TRAIN:
    tensor_out = tf.nn.dropout(tensor_out, rate=(1 - keep_prob))
  return tf.reshape(tensor_out, [bsz, -1, 1, num_features])


def _get_convolutional_layer(pod_layers, head_type, channels, valid_step_mask,
                             tensor, invalid_value):
  """Get convolutional layer."""
  info = _NGRAM_INFO[head_type]
  pad = info["padding"]
  weight_mask = info["mask"]
  kernel_size = info["kernel_size"]
  paddings = [[0, 0], [0, pad], [0, 0], [0, 0]]
  # Padding before convolution and using 'valid' instead of 'same' padding
  # structure ensures that the convolution output is identical between
  # train/eval and inference models. It also ensures that they lineup
  # correctly with the valid_step_mask.
  tensor = tf.pad(tensor, paddings) if pad != 0 else tensor
  # Not using activation allows a bigram feature to de-emphasize a feature
  # that triggers positive for unigram for example. The output weights
  # should be allowed to be positve or negative for this to happen.
  tensor = pod_layers.convolution2d(
      tensor,
      kernel_size,
      channels,
      padding="VALID",
      weight_mask=weight_mask,
      activation=None)
  if valid_step_mask is not None:
    tensor = tensor * valid_step_mask + (1 - valid_step_mask) * invalid_value
  return tensor


def _get_predictions(pod_layers, head_type, keys, values, channels,
                     valid_step_mask):
  """Get predictions using one ngram head."""
  conv_layer = functools.partial(_get_convolutional_layer, pod_layers,
                                 head_type, channels, valid_step_mask)
  return conv_layer(keys, -100), conv_layer(values, 0)


def reduce_tensors(pod_layers, bsz, attention_logits, values):
  """Reduce information using attention."""
  channels = attention_logits.get_shape().as_list()[-1]
  attention_logits = tf.reshape(attention_logits, [bsz, -1, channels])
  values = tf.reshape(values, [bsz, -1, channels])

  with tf.variable_scope("attention_expected_value"):
    attention_logits = tf.identity(attention_logits, "attention_logits_in")
    values = tf.identity(values, "values_in")
    attention_logits = tf.transpose(attention_logits, [0, 2, 1])
    values = tf.transpose(values, [0, 2, 1])
    attention = tf.nn.softmax(attention_logits, axis=2)
    evalue = tf.reduce_sum(attention * values, axis=[2])
    evalue = tf.identity(evalue, "expected_value_out")
  return pod_layers.quantization(evalue)


def ngram_attention_args_v2(projection, seq_length, mode, num_classes,
                            model_args):
  """Implements an ngram attention network.

  Args:
    projection: Projection features from text.
    seq_length: Sequence length.
    mode: Model creation mode (train, eval or predict).
    num_classes: Number of classes to be predicted.
    model_args: A namedtuple containing all model arguments.

  Returns:
    A tensor corresponding to the logits of the graph.
  """

  pod_layers = common_layer.CommonLayers(
      mode, quantization_enabled=model_args.quantize)

  features = pod_layers.qrange_tanh(projection)
  bsz = features.get_shape().as_list()[0] or tf.shape(features)[0]

  # Regularizer just for the word embedding.
  pod_layers.set_regularizer_scale(model_args.embedding_regularizer_scale)
  values = _fully_connected(pod_layers, features, model_args.embedding_size,
                            mode, bsz, model_args.keep_prob)
  keys = _fully_connected(pod_layers, features, model_args.embedding_size, mode,
                          bsz, model_args.keep_prob)

  # Regularizer for the rest of the network.
  pod_layers.set_regularizer_scale(model_args.network_regularizer_scale)

  valid_step_mask = None
  if mode != tf.estimator.ModeKeys.PREDICT:
    valid_step_mask = pod_layers.zero_beyond_sequence_length(
        seq_length, features)
    valid_step_mask = tf.expand_dims(valid_step_mask, 3)
    # Mask out the sentence beyond valid sequence length for training graph.
    # This ensures that these values are all zeroed out. Without masking, the
    # fully connected layer before will make them take an arbitrary constant
    # value during training/eval in the minibatches. But these values won't
    # be present during inference as the inference is not batched.
    keys = valid_step_mask * keys
    values = valid_step_mask * values
    pod_layers.set_variable_length_moment_fn(seq_length, tf.shape(features)[1])

  multi_head_predictions = []
  for head_type, head in zip(model_args.head_types, model_args.heads):
    if not head:
      continue
    att_logits, att_values = _get_predictions(pod_layers, head_type, keys,
                                              values, head, valid_step_mask)
    multi_head_predictions.append(
        reduce_tensors(pod_layers, bsz, att_logits, att_values))
  multi_head_predictions = tf.concat(multi_head_predictions, axis=1)
  multi_head_predictions = pod_layers.quantization(multi_head_predictions)
  # Sequence dimension has been summed out, so we don't need special moment
  # function.
  pod_layers.set_moment_fn(None)

  output = multi_head_predictions

  # Add FC layers before the logits.
  for fc_layer_size in model_args.pre_logits_fc_layers:
    output = pod_layers.fully_connected(
        output, fc_layer_size, activation=tf.nn.relu)

  return pod_layers.fully_connected(output, num_classes, activation=None)


def create_encoder(model_config: Dict[str, Any], projection: tf.Tensor,
                   seq_length: tf.Tensor,
                   mode: tf.estimator.ModeKeys) -> Mapping[str, tf.Tensor]:
  """Implements a simple attention network for brand safety."""

  args = {}

  def _get_params(varname, default_value=None):
    value = model_config[varname] if varname in model_config else default_value
    logging.info("%s = %s", varname, value)
    args[varname] = value

  _get_params("labels")
  _get_params("quantize", True)
  _get_params("max_seq_len", 0)
  _get_params("max_seq_len_inference", 0)
  _get_params("split_on_space", True)
  _get_params("exclude_nonalphaspace_unicodes", False)
  _get_params("embedding_regularizer_scale", 35e-3)
  _get_params("embedding_size", 64)
  _get_params("heads", [0, 64, 64, 0, 0])
  _get_params("feature_size", 512)
  _get_params("network_regularizer_scale", 1e-4)
  _get_params("keep_prob", 0.5)
  _get_params("word_novelty_bits", 0)
  _get_params("doc_size_levels", 0)
  _get_params("pre_logits_fc_layers", [])
  args["head_types"] = list(range(len(args["heads"])))
  args["text_distortion_probability"] = 0.0
  if mode == tf.estimator.ModeKeys.TRAIN:
    _get_params("text_distortion_probability", 0.25)
  model_args = collections.namedtuple("ModelArgs", sorted(args))(**args)
  num_classes = len(model_args.labels)
  logits = ngram_attention_args_v2(
      projection=projection,
      seq_length=seq_length,
      mode=mode,
      num_classes=num_classes,
      model_args=model_args)
  outputs = {
      "logits":
          tf.identity(logits, "Logits"),
      "label_map":
          tf.constant(list(model_args.labels), tf.string, name="LabelMap")
  }
  return outputs