maskrcnn_model.py 14.7 KB
Newer Older
Yeqing Li's avatar
Yeqing Li committed
1
# Copyright 2021 The TensorFlow Authors. All Rights Reserved.
Abdullah Rashwan's avatar
Abdullah Rashwan committed
2
3
4
5
6
7
8
9
10
11
12
13
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
Yeqing Li's avatar
Yeqing Li committed
14

Abdullah Rashwan's avatar
Abdullah Rashwan committed
15
16
"""Mask R-CNN model."""

Xianzhi Du's avatar
Xianzhi Du committed
17
from typing import Any, List, Mapping, Optional, Union
Fan Yang's avatar
Fan Yang committed
18

Abdullah Rashwan's avatar
Abdullah Rashwan committed
19
20
import tensorflow as tf

21
from official.vision.beta.ops import anchor
Abdullah Rashwan's avatar
Abdullah Rashwan committed
22
23
24
25
26
27
28
29
from official.vision.beta.ops import box_ops


@tf.keras.utils.register_keras_serializable(package='Vision')
class MaskRCNNModel(tf.keras.Model):
  """The Mask R-CNN model."""

  def __init__(self,
Fan Yang's avatar
Fan Yang committed
30
31
32
               backbone: tf.keras.Model,
               decoder: tf.keras.Model,
               rpn_head: tf.keras.layers.Layer,
Xianzhi Du's avatar
Xianzhi Du committed
33
34
               detection_head: Union[tf.keras.layers.Layer,
                                     List[tf.keras.layers.Layer]],
Fan Yang's avatar
Fan Yang committed
35
               roi_generator: tf.keras.layers.Layer,
Xianzhi Du's avatar
Xianzhi Du committed
36
37
               roi_sampler: Union[tf.keras.layers.Layer,
                                  List[tf.keras.layers.Layer]],
Fan Yang's avatar
Fan Yang committed
38
39
40
41
42
               roi_aligner: tf.keras.layers.Layer,
               detection_generator: tf.keras.layers.Layer,
               mask_head: Optional[tf.keras.layers.Layer] = None,
               mask_sampler: Optional[tf.keras.layers.Layer] = None,
               mask_roi_aligner: Optional[tf.keras.layers.Layer] = None,
Xianzhi Du's avatar
Xianzhi Du committed
43
44
               class_agnostic_bbox_pred: bool = False,
               cascade_class_ensemble: bool = False,
45
46
47
48
49
               min_level: Optional[int] = None,
               max_level: Optional[int] = None,
               num_scales: Optional[int] = None,
               aspect_ratios: Optional[List[float]] = None,
               anchor_size: Optional[float] = None,
Abdullah Rashwan's avatar
Abdullah Rashwan committed
50
51
52
53
54
55
56
               **kwargs):
    """Initializes the Mask R-CNN model.

    Args:
      backbone: `tf.keras.Model`, the backbone network.
      decoder: `tf.keras.Model`, the decoder network.
      rpn_head: the RPN head.
Xianzhi Du's avatar
Xianzhi Du committed
57
      detection_head: the detection head or a list of heads.
Abdullah Rashwan's avatar
Abdullah Rashwan committed
58
      roi_generator: the ROI generator.
Xianzhi Du's avatar
Xianzhi Du committed
59
60
      roi_sampler: a single ROI sampler or a list of ROI samplers for cascade
        detection heads.
Abdullah Rashwan's avatar
Abdullah Rashwan committed
61
62
63
64
65
      roi_aligner: the ROI aligner.
      detection_generator: the detection generator.
      mask_head: the mask head.
      mask_sampler: the mask sampler.
      mask_roi_aligner: the ROI alginer for mask prediction.
Xianzhi Du's avatar
Xianzhi Du committed
66
67
68
69
      class_agnostic_bbox_pred: if True, perform class agnostic bounding box
        prediction. Needs to be `True` for Cascade RCNN models.
      cascade_class_ensemble: if True, ensemble classification scores over
        all detection heads.
70
71
72
73
74
75
76
77
78
79
80
      min_level: Minimum level in output feature maps.
      max_level: Maximum level in output feature maps.
      num_scales: A number representing intermediate scales added
        on each level. For instances, num_scales=2 adds one additional
        intermediate anchor scales [2^0, 2^0.5] on each level.
      aspect_ratios: A list representing the aspect raito
        anchors added on each level. The number indicates the ratio of width to
        height. For instances, aspect_ratios=[1.0, 2.0, 0.5] adds three anchors
        on each scale level.
      anchor_size: A number representing the scale of size of the base
        anchor to the feature stride 2^level.
Abdullah Rashwan's avatar
Abdullah Rashwan committed
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
      **kwargs: keyword arguments to be passed.
    """
    super(MaskRCNNModel, self).__init__(**kwargs)
    self._config_dict = {
        'backbone': backbone,
        'decoder': decoder,
        'rpn_head': rpn_head,
        'detection_head': detection_head,
        'roi_generator': roi_generator,
        'roi_sampler': roi_sampler,
        'roi_aligner': roi_aligner,
        'detection_generator': detection_generator,
        'mask_head': mask_head,
        'mask_sampler': mask_sampler,
        'mask_roi_aligner': mask_roi_aligner,
Xianzhi Du's avatar
Xianzhi Du committed
96
97
        'class_agnostic_bbox_pred': class_agnostic_bbox_pred,
        'cascade_class_ensemble': cascade_class_ensemble,
98
99
100
101
102
        'min_level': min_level,
        'max_level': max_level,
        'num_scales': num_scales,
        'aspect_ratios': aspect_ratios,
        'anchor_size': anchor_size,
Abdullah Rashwan's avatar
Abdullah Rashwan committed
103
104
105
106
    }
    self.backbone = backbone
    self.decoder = decoder
    self.rpn_head = rpn_head
Xianzhi Du's avatar
Xianzhi Du committed
107
108
109
110
    if not isinstance(detection_head, (list, tuple)):
      self.detection_head = [detection_head]
    else:
      self.detection_head = detection_head
Abdullah Rashwan's avatar
Abdullah Rashwan committed
111
    self.roi_generator = roi_generator
Xianzhi Du's avatar
Xianzhi Du committed
112
113
114
115
116
117
118
119
    if not isinstance(roi_sampler, (list, tuple)):
      self.roi_sampler = [roi_sampler]
    else:
      self.roi_sampler = roi_sampler
    if len(self.roi_sampler) > 1 and not class_agnostic_bbox_pred:
      raise ValueError(
          '`class_agnostic_bbox_pred` needs to be True if multiple detection heads are specified.'
      )
Abdullah Rashwan's avatar
Abdullah Rashwan committed
120
121
122
123
124
125
126
127
128
129
    self.roi_aligner = roi_aligner
    self.detection_generator = detection_generator
    self._include_mask = mask_head is not None
    self.mask_head = mask_head
    if self._include_mask and mask_sampler is None:
      raise ValueError('`mask_sampler` is not provided in Mask R-CNN.')
    self.mask_sampler = mask_sampler
    if self._include_mask and mask_roi_aligner is None:
      raise ValueError('`mask_roi_aligner` is not provided in Mask R-CNN.')
    self.mask_roi_aligner = mask_roi_aligner
Xianzhi Du's avatar
Xianzhi Du committed
130
131
132
133
134
135
136
    # Weights for the regression losses for each FRCNN layer.
    # TODO(xianzhi): Make the weights configurable.
    self._cascade_layer_to_weights = [
        [10.0, 10.0, 5.0, 5.0],
        [20.0, 20.0, 10.0, 10.0],
        [30.0, 30.0, 15.0, 15.0],
    ]
Abdullah Rashwan's avatar
Abdullah Rashwan committed
137
138

  def call(self,
Fan Yang's avatar
Fan Yang committed
139
140
141
           images: tf.Tensor,
           image_shape: tf.Tensor,
           anchor_boxes: Optional[Mapping[str, tf.Tensor]] = None,
Rebecca Chen's avatar
Rebecca Chen committed
142
143
144
145
           gt_boxes: Optional[tf.Tensor] = None,
           gt_classes: Optional[tf.Tensor] = None,
           gt_masks: Optional[tf.Tensor] = None,
           training: Optional[bool] = None) -> Mapping[str, tf.Tensor]:
Abdullah Rashwan's avatar
Abdullah Rashwan committed
146
147
148
    model_outputs = {}

    # Feature extraction.
Jaeyoun Kim's avatar
Jaeyoun Kim committed
149
    backbone_features = self.backbone(images)
Abdullah Rashwan's avatar
Abdullah Rashwan committed
150
    if self.decoder:
Jaeyoun Kim's avatar
Jaeyoun Kim committed
151
152
153
      features = self.decoder(backbone_features)
    else:
      features = backbone_features
Abdullah Rashwan's avatar
Abdullah Rashwan committed
154
155
156
157
158

    # Region proposal network.
    rpn_scores, rpn_boxes = self.rpn_head(features)

    model_outputs.update({
Jaeyoun Kim's avatar
Jaeyoun Kim committed
159
160
        'backbone_features': backbone_features,
        'decoder_features': features,
Abdullah Rashwan's avatar
Abdullah Rashwan committed
161
162
163
164
        'rpn_boxes': rpn_boxes,
        'rpn_scores': rpn_scores
    })

165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
    # Generate anchor boxes for this batch if not provided.
    if anchor_boxes is None:
      _, image_height, image_width, _ = images.get_shape().as_list()
      anchor_boxes = anchor.Anchor(
          min_level=self._config_dict['min_level'],
          max_level=self._config_dict['max_level'],
          num_scales=self._config_dict['num_scales'],
          aspect_ratios=self._config_dict['aspect_ratios'],
          anchor_size=self._config_dict['anchor_size'],
          image_size=(image_height, image_width)).multilevel_boxes
      for l in anchor_boxes:
        anchor_boxes[l] = tf.tile(
            tf.expand_dims(anchor_boxes[l], axis=0),
            [tf.shape(images)[0], 1, 1, 1])

Abdullah Rashwan's avatar
Abdullah Rashwan committed
180
    # Generate RoIs.
Xianzhi Du's avatar
Xianzhi Du committed
181
182
    current_rois, _ = self.roi_generator(rpn_boxes, rpn_scores, anchor_boxes,
                                         image_shape, training)
Abdullah Rashwan's avatar
Abdullah Rashwan committed
183

Xianzhi Du's avatar
Xianzhi Du committed
184
185
186
187
188
189
190
    next_rois = current_rois
    all_class_outputs = []
    for cascade_num in range(len(self.roi_sampler)):
      # In cascade RCNN we want the higher layers to have different regression
      # weights as the predicted deltas become smaller and smaller.
      regression_weights = self._cascade_layer_to_weights[cascade_num]
      current_rois = next_rois
Abdullah Rashwan's avatar
Abdullah Rashwan committed
191

Xianzhi Du's avatar
Xianzhi Du committed
192
193
194
195
196
197
198
199
200
      (class_outputs, box_outputs, model_outputs, matched_gt_boxes,
       matched_gt_classes, matched_gt_indices,
       current_rois) = self._run_frcnn_head(
           features=features,
           rois=current_rois,
           gt_boxes=gt_boxes,
           gt_classes=gt_classes,
           training=training,
           model_outputs=model_outputs,
Xianzhi Du's avatar
Xianzhi Du committed
201
           cascade_num=cascade_num,
Xianzhi Du's avatar
Xianzhi Du committed
202
203
           regression_weights=regression_weights)
      all_class_outputs.append(class_outputs)
Abdullah Rashwan's avatar
Abdullah Rashwan committed
204

Xianzhi Du's avatar
Xianzhi Du committed
205
206
207
208
209
210
211
212
      # Generate ROIs for the next cascade head if there is any.
      if cascade_num < len(self.roi_sampler) - 1:
        next_rois = box_ops.decode_boxes(
            tf.cast(box_outputs, tf.float32),
            current_rois,
            weights=regression_weights)
        next_rois = box_ops.clip_boxes(next_rois,
                                       tf.expand_dims(image_shape, axis=1))
Abdullah Rashwan's avatar
Abdullah Rashwan committed
213

Xianzhi Du's avatar
Xianzhi Du committed
214
215
216
    if not training:
      if self._config_dict['cascade_class_ensemble']:
        class_outputs = tf.add_n(all_class_outputs) / len(all_class_outputs)
Abdullah Rashwan's avatar
Abdullah Rashwan committed
217
218

      detections = self.detection_generator(
Xianzhi Du's avatar
Xianzhi Du committed
219
220
221
222
223
224
          box_outputs,
          class_outputs,
          current_rois,
          image_shape,
          regression_weights,
          bbox_per_class=(not self._config_dict['class_agnostic_bbox_pred']))
Abdullah Rashwan's avatar
Abdullah Rashwan committed
225
      model_outputs.update({
Fan Yang's avatar
Fan Yang committed
226
227
          'cls_outputs': class_outputs,
          'box_outputs': box_outputs,
Abdullah Rashwan's avatar
Abdullah Rashwan committed
228
      })
Fan Yang's avatar
Fan Yang committed
229
230
231
232
233
234
235
236
237
238
239
240
      if self.detection_generator.get_config()['apply_nms']:
        model_outputs.update({
            'detection_boxes': detections['detection_boxes'],
            'detection_scores': detections['detection_scores'],
            'detection_classes': detections['detection_classes'],
            'num_detections': detections['num_detections']
        })
      else:
        model_outputs.update({
            'decoded_boxes': detections['decoded_boxes'],
            'decoded_box_scores': detections['decoded_box_scores']
        })
Abdullah Rashwan's avatar
Abdullah Rashwan committed
241
242
243
244
245

    if not self._include_mask:
      return model_outputs

    if training:
Xianzhi Du's avatar
Xianzhi Du committed
246
247
248
      current_rois, roi_classes, roi_masks = self.mask_sampler(
          current_rois, matched_gt_boxes, matched_gt_classes,
          matched_gt_indices, gt_masks)
Abdullah Rashwan's avatar
Abdullah Rashwan committed
249
250
251
252
253
254
255
      roi_masks = tf.stop_gradient(roi_masks)

      model_outputs.update({
          'mask_class_targets': roi_classes,
          'mask_targets': roi_masks,
      })
    else:
Xianzhi Du's avatar
Xianzhi Du committed
256
      current_rois = model_outputs['detection_boxes']
Abdullah Rashwan's avatar
Abdullah Rashwan committed
257
258
259
      roi_classes = model_outputs['detection_classes']

    # Mask RoI align.
Xianzhi Du's avatar
Xianzhi Du committed
260
    mask_roi_features = self.mask_roi_aligner(features, current_rois)
Abdullah Rashwan's avatar
Abdullah Rashwan committed
261
262
263

    # Mask head.
    raw_masks = self.mask_head([mask_roi_features, roi_classes])
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
264

Abdullah Rashwan's avatar
Abdullah Rashwan committed
265
266
267
268
269
270
271
272
273
274
    if training:
      model_outputs.update({
          'mask_outputs': raw_masks,
      })
    else:
      model_outputs.update({
          'detection_masks': tf.math.sigmoid(raw_masks),
      })
    return model_outputs

Xianzhi Du's avatar
Xianzhi Du committed
275
  def _run_frcnn_head(self, features, rois, gt_boxes, gt_classes, training,
Xianzhi Du's avatar
Xianzhi Du committed
276
                      model_outputs, cascade_num, regression_weights):
Xianzhi Du's avatar
Xianzhi Du committed
277
278
279
280
281
282
283
284
285
286
287
288
    """Runs the frcnn head that does both class and box prediction.

    Args:
      features: `list` of features from the feature extractor.
      rois: `list` of current rois that will be used to predict bbox refinement
        and classes from.
      gt_boxes: a tensor with a shape of [batch_size, MAX_NUM_INSTANCES, 4].
        This tensor might have paddings with a negative value.
      gt_classes: [batch_size, MAX_INSTANCES] representing the groundtruth box
        classes. It is padded with -1s to indicate the invalid classes.
      training: `bool`, if model is training or being evaluated.
      model_outputs: `dict`, used for storing outputs used for eval and losses.
Xianzhi Du's avatar
Xianzhi Du committed
289
      cascade_num: `int`, the current frcnn layer in the cascade.
Xianzhi Du's avatar
Xianzhi Du committed
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
      regression_weights: `list`, weights used for l1 loss in bounding box
        regression.

    Returns:
      class_outputs: Class predictions for rois.
      box_outputs: Box predictions for rois. These are formatted for the
        regression loss and need to be converted before being used as rois
        in the next stage.
      model_outputs: Updated dict with predictions used for losses and eval.
      matched_gt_boxes: If `is_training` is true, then these give the gt box
        location of its positive match.
      matched_gt_classes: If `is_training` is true, then these give the gt class
         of the predicted box.
      matched_gt_boxes: If `is_training` is true, then these give the box
        location of its positive match.
      matched_gt_indices: If `is_training` is true, then gives the index of
        the positive box match. Used for mask prediction.
      rois: The sampled rois used for this layer.
    """
    # Only used during training.
    matched_gt_boxes, matched_gt_classes, matched_gt_indices = (None, None,
                                                                None)
312
    if training and gt_boxes is not None:
Xianzhi Du's avatar
Xianzhi Du committed
313
314
      rois = tf.stop_gradient(rois)

Xianzhi Du's avatar
Xianzhi Du committed
315
      current_roi_sampler = self.roi_sampler[cascade_num]
Xianzhi Du's avatar
Xianzhi Du committed
316
317
318
319
320
321
322
323
324
325
326
      rois, matched_gt_boxes, matched_gt_classes, matched_gt_indices = (
          current_roi_sampler(rois, gt_boxes, gt_classes))
      # Create bounding box training targets.
      box_targets = box_ops.encode_boxes(
          matched_gt_boxes, rois, weights=regression_weights)
      # If the target is background, the box target is set to all 0s.
      box_targets = tf.where(
          tf.tile(
              tf.expand_dims(tf.equal(matched_gt_classes, 0), axis=-1),
              [1, 1, 4]), tf.zeros_like(box_targets), box_targets)
      model_outputs.update({
Xianzhi Du's avatar
Xianzhi Du committed
327
328
          'class_targets_{}'.format(cascade_num)
          if cascade_num else 'class_targets':
Xianzhi Du's avatar
Xianzhi Du committed
329
              matched_gt_classes,
Xianzhi Du's avatar
Xianzhi Du committed
330
331
          'box_targets_{}'.format(cascade_num)
          if cascade_num else 'box_targets':
Xianzhi Du's avatar
Xianzhi Du committed
332
333
334
335
336
337
338
              box_targets,
      })

    # Get roi features.
    roi_features = self.roi_aligner(features, rois)

    # Run frcnn head to get class and bbox predictions.
Xianzhi Du's avatar
Xianzhi Du committed
339
340
    current_detection_head = self.detection_head[cascade_num]
    class_outputs, box_outputs = current_detection_head(roi_features)
Xianzhi Du's avatar
Xianzhi Du committed
341
342

    model_outputs.update({
Xianzhi Du's avatar
Xianzhi Du committed
343
344
        'class_outputs_{}'.format(cascade_num)
        if cascade_num else 'class_outputs':
Xianzhi Du's avatar
Xianzhi Du committed
345
            class_outputs,
Xianzhi Du's avatar
Xianzhi Du committed
346
        'box_outputs_{}'.format(cascade_num) if cascade_num else 'box_outputs':
Xianzhi Du's avatar
Xianzhi Du committed
347
348
349
350
351
            box_outputs,
    })
    return (class_outputs, box_outputs, model_outputs, matched_gt_boxes,
            matched_gt_classes, matched_gt_indices, rois)

A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
352
  @property
Fan Yang's avatar
Fan Yang committed
353
354
  def checkpoint_items(
      self) -> Mapping[str, Union[tf.keras.Model, tf.keras.layers.Layer]]:
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
355
356
357
358
359
360
361
362
363
364
365
366
    """Returns a dictionary of items to be additionally checkpointed."""
    items = dict(
        backbone=self.backbone,
        rpn_head=self.rpn_head,
        detection_head=self.detection_head)
    if self.decoder is not None:
      items.update(decoder=self.decoder)
    if self._include_mask:
      items.update(mask_head=self.mask_head)

    return items

Fan Yang's avatar
Fan Yang committed
367
  def get_config(self) -> Mapping[str, Any]:
Abdullah Rashwan's avatar
Abdullah Rashwan committed
368
369
370
371
372
    return self._config_dict

  @classmethod
  def from_config(cls, config):
    return cls(**config)