cifar10_test.py 7.02 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
# Copyright 2017 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

from tempfile import mkstemp

import numpy as np
Karmel Allison's avatar
Karmel Allison committed
23
import tensorflow as tf  # pylint: disable=g-bad-import-order
24

25
from official.resnet import cifar10_main
26
from official.utils.testing import integration
27
28
29

tf.logging.set_verbosity(tf.logging.ERROR)

30
_BATCH_SIZE = 128
Neal Wu's avatar
Neal Wu committed
31
32
33
_HEIGHT = 32
_WIDTH = 32
_NUM_CHANNELS = 3
34

35
36

class BaseTest(tf.test.TestCase):
Karmel Allison's avatar
Karmel Allison committed
37
38
  """Tests for the Cifar10 version of Resnet.
  """
39

40
41
42
43
44
  @classmethod
  def setUpClass(cls):  # pylint: disable=invalid-name
    super(BaseTest, cls).setUpClass()
    cifar10_main.define_cifar_flags()

45
46
47
48
  def tearDown(self):
    super(BaseTest, self).tearDown()
    tf.gfile.DeleteRecursively(self.get_temp_dir())

49
50
51
  def test_dataset_input_fn(self):
    fake_data = bytearray()
    fake_data.append(7)
Neal Wu's avatar
Neal Wu committed
52
53
    for i in range(_NUM_CHANNELS):
      for _ in range(_HEIGHT * _WIDTH):
54
55
56
        fake_data.append(i)

    _, filename = mkstemp(dir=self.get_temp_dir())
57
58
59
    data_file = open(filename, 'wb')
    data_file.write(fake_data)
    data_file.close()
60

61
    fake_dataset = tf.data.FixedLengthRecordDataset(
Karmel Allison's avatar
Karmel Allison committed
62
        filename, cifar10_main._RECORD_BYTES)  # pylint: disable=protected-access
63
64
    fake_dataset = fake_dataset.map(
        lambda val: cifar10_main.parse_record(val, False))
65
66
    image, label = fake_dataset.make_one_shot_iterator().get_next()

Neal Wu's avatar
Neal Wu committed
67
68
    self.assertAllEqual(label.shape, (10,))
    self.assertAllEqual(image.shape, (_HEIGHT, _WIDTH, _NUM_CHANNELS))
69
70
71
72
73
74
75
76

    with self.test_session() as sess:
      image, label = sess.run([image, label])

      self.assertAllEqual(label, np.array([int(i == 7) for i in range(10)]))

      for row in image:
        for pixel in row:
77
          self.assertAllClose(pixel, np.array([-1.225, 0., 1.225]), rtol=1e-3)
78

79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
  def _cifar10_model_fn_helper(self, mode, version, dtype, multi_gpu=False):
    with tf.Graph().as_default() as g:
      input_fn = cifar10_main.get_synth_input_fn()
      dataset = input_fn(True, '', _BATCH_SIZE)
      iterator = dataset.make_one_shot_iterator()
      features, labels = iterator.get_next()
      spec = cifar10_main.cifar10_model_fn(
          features, labels, mode, {
              'dtype': dtype,
              'resnet_size': 32,
              'data_format': 'channels_last',
              'batch_size': _BATCH_SIZE,
              'version': version,
              'loss_scale': 128 if dtype == tf.float16 else 1,
              'multi_gpu': multi_gpu
          })

      predictions = spec.predictions
      self.assertAllEqual(predictions['probabilities'].shape,
                          (_BATCH_SIZE, 10))
      self.assertEqual(predictions['probabilities'].dtype, tf.float32)
      self.assertAllEqual(predictions['classes'].shape, (_BATCH_SIZE,))
      self.assertEqual(predictions['classes'].dtype, tf.int64)

      if mode != tf.estimator.ModeKeys.PREDICT:
        loss = spec.loss
        self.assertAllEqual(loss.shape, ())
        self.assertEqual(loss.dtype, tf.float32)

      if mode == tf.estimator.ModeKeys.EVAL:
        eval_metric_ops = spec.eval_metric_ops
        self.assertAllEqual(eval_metric_ops['accuracy'][0].shape, ())
        self.assertAllEqual(eval_metric_ops['accuracy'][1].shape, ())
        self.assertEqual(eval_metric_ops['accuracy'][0].dtype, tf.float32)
        self.assertEqual(eval_metric_ops['accuracy'][1].dtype, tf.float32)

      for v in tf.trainable_variables():
        self.assertEqual(v.dtype.base_dtype, tf.float32)

      tensors_to_check = ('initial_conv:0', 'block_layer1:0', 'block_layer2:0',
                          'block_layer3:0', 'final_reduce_mean:0',
                          'final_dense:0')

      for tensor_name in tensors_to_check:
        tensor = g.get_tensor_by_name('resnet_model/' + tensor_name)
        self.assertEqual(tensor.dtype, dtype,
                         'Tensor {} has dtype {}, while dtype {} was '
                         'expected'.format(tensor, tensor.dtype,
                                           dtype))

  def cifar10_model_fn_helper(self, mode, version, multi_gpu=False):
    self._cifar10_model_fn_helper(mode=mode, version=version, dtype=tf.float32,
                                  multi_gpu=multi_gpu)
    self._cifar10_model_fn_helper(mode=mode, version=version, dtype=tf.float16,
                                  multi_gpu=multi_gpu)
134

135
  def test_cifar10_model_fn_train_mode_v1(self):
136
    self.cifar10_model_fn_helper(tf.estimator.ModeKeys.TRAIN, version=1)
137

138
  def test_cifar10_model_fn_trainmode__v2(self):
139
140
141
142
143
144
145
    self.cifar10_model_fn_helper(tf.estimator.ModeKeys.TRAIN, version=2)

  def test_cifar10_model_fn_train_mode_multi_gpu_v1(self):
    self.cifar10_model_fn_helper(tf.estimator.ModeKeys.TRAIN, version=1,
                                 multi_gpu=True)

  def test_cifar10_model_fn_train_mode_multi_gpu_v2(self):
146
    self.cifar10_model_fn_helper(tf.estimator.ModeKeys.TRAIN, version=2,
147
                                 multi_gpu=True)
148
149

  def test_cifar10_model_fn_eval_mode_v1(self):
150
    self.cifar10_model_fn_helper(tf.estimator.ModeKeys.EVAL, version=1)
151
152

  def test_cifar10_model_fn_eval_mode_v2(self):
153
    self.cifar10_model_fn_helper(tf.estimator.ModeKeys.EVAL, version=2)
154
155

  def test_cifar10_model_fn_predict_mode_v1(self):
156
    self.cifar10_model_fn_helper(tf.estimator.ModeKeys.PREDICT, version=1)
157
158

  def test_cifar10_model_fn_predict_mode_v2(self):
159
    self.cifar10_model_fn_helper(tf.estimator.ModeKeys.PREDICT, version=2)
160

161
  def _test_cifar10model_shape(self, version):
Neal Wu's avatar
Neal Wu committed
162
163
164
    batch_size = 135
    num_classes = 246

165
166
167
168
169
170
171
172
173
    model = cifar10_main.Cifar10Model(32, data_format='channels_last',
                                      num_classes=num_classes, version=version)
    fake_input = tf.random_uniform([batch_size, _HEIGHT, _WIDTH, _NUM_CHANNELS])
    output = model(fake_input, training=True)

    self.assertAllEqual(output.shape, (batch_size, num_classes))

  def test_cifar10model_shape_v1(self):
    self._test_cifar10model_shape(version=1)
Neal Wu's avatar
Neal Wu committed
174

175
176
  def test_cifar10model_shape_v2(self):
    self._test_cifar10model_shape(version=2)
Neal Wu's avatar
Neal Wu committed
177

178
  def test_cifar10_end_to_end_synthetic_v1(self):
179
180
181
182
    integration.run_synthetic(
        main=cifar10_main.main, tmp_root=self.get_temp_dir(),
        extra_flags=['-v', '1']
    )
183
184

  def test_cifar10_end_to_end_synthetic_v2(self):
185
186
187
188
    integration.run_synthetic(
        main=cifar10_main.main, tmp_root=self.get_temp_dir(),
        extra_flags=['-v', '2']
    )
189

190
191
192

if __name__ == '__main__':
  tf.test.main()