question_answering.py 11.4 KB
Newer Older
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
# Lint as: python3
# Copyright 2020 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Question answering task."""
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
17
18
19
20
import collections
import json
import os
from absl import logging
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
21
22
23
24
25
import dataclasses
import tensorflow as tf
import tensorflow_hub as hub

from official.core import base_task
Abdullah Rashwan's avatar
Abdullah Rashwan committed
26
from official.core import task_factory
Hongkun Yu's avatar
Hongkun Yu committed
27
from official.modeling.hyperparams import base_config
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
28
from official.modeling.hyperparams import config_definitions as cfg
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
29
30
31
from official.nlp.bert import squad_evaluate_v1_1
from official.nlp.bert import squad_evaluate_v2_0
from official.nlp.bert import tokenization
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
32
from official.nlp.configs import encoders
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
33
from official.nlp.data import data_loader_factory
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
34
35
from official.nlp.data import squad_lib as squad_lib_wp
from official.nlp.data import squad_lib_sp
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
36
from official.nlp.modeling import models
Chen Chen's avatar
Chen Chen committed
37
from official.nlp.tasks import utils
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
38
39


Hongkun Yu's avatar
Hongkun Yu committed
40
41
42
43
44
45
46
@dataclasses.dataclass
class ModelConfig(base_config.Config):
  """A base span labeler configuration."""
  encoder: encoders.TransformerEncoderConfig = (
      encoders.TransformerEncoderConfig())


A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
47
48
49
50
51
52
@dataclasses.dataclass
class QuestionAnsweringConfig(cfg.TaskConfig):
  """The model config."""
  # At most one of `init_checkpoint` and `hub_module_url` can be specified.
  init_checkpoint: str = ''
  hub_module_url: str = ''
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
53
54
55
  n_best_size: int = 20
  max_answer_length: int = 30
  null_score_diff_threshold: float = 0.0
Hongkun Yu's avatar
Hongkun Yu committed
56
  model: ModelConfig = ModelConfig()
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
57
58
59
60
  train_data: cfg.DataConfig = cfg.DataConfig()
  validation_data: cfg.DataConfig = cfg.DataConfig()


Abdullah Rashwan's avatar
Abdullah Rashwan committed
61
@task_factory.register_task_cls(QuestionAnsweringConfig)
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
62
class QuestionAnsweringTask(base_task.Task):
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
63
  """Task object for question answering."""
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
64

A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
65
66
  def __init__(self, params=cfg.TaskConfig, logging_dir=None):
    super(QuestionAnsweringTask, self).__init__(params, logging_dir)
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
67
68
69
70
71
72
73
74
    if params.hub_module_url and params.init_checkpoint:
      raise ValueError('At most one of `hub_module_url` and '
                       '`init_checkpoint` can be specified.')
    if params.hub_module_url:
      self._hub_module = hub.load(params.hub_module_url)
    else:
      self._hub_module = None

A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
75
76
77
78
79
80
81
82
    if params.validation_data.tokenization == 'WordPiece':
      self.squad_lib = squad_lib_wp
    elif params.validation_data.tokenization == 'SentencePiece':
      self.squad_lib = squad_lib_sp
    else:
      raise ValueError('Unsupported tokenization method: {}'.format(
          params.validation_data.tokenization))

A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
83
84
85
86
    if params.validation_data.input_path:
      self._tf_record_input_path, self._eval_examples, self._eval_features = (
          self._preprocess_eval_data(params.validation_data))

A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
87
88
  def build_model(self):
    if self._hub_module:
Chen Chen's avatar
Chen Chen committed
89
      encoder_network = utils.get_encoder_from_hub(self._hub_module)
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
90
91
    else:
      encoder_network = encoders.instantiate_encoder_from_cfg(
Hongkun Yu's avatar
Hongkun Yu committed
92
93
          self.task_config.model.encoder)
    # Currently, we only supports bert-style question answering finetuning.
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
94
95
96
    return models.BertSpanLabeler(
        network=encoder_network,
        initializer=tf.keras.initializers.TruncatedNormal(
Hongkun Yu's avatar
Hongkun Yu committed
97
            stddev=self.task_config.model.encoder.initializer_range))
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115

  def build_losses(self, labels, model_outputs, aux_losses=None) -> tf.Tensor:
    start_positions = labels['start_positions']
    end_positions = labels['end_positions']
    start_logits, end_logits = model_outputs

    start_loss = tf.keras.losses.sparse_categorical_crossentropy(
        start_positions,
        tf.cast(start_logits, dtype=tf.float32),
        from_logits=True)
    end_loss = tf.keras.losses.sparse_categorical_crossentropy(
        end_positions,
        tf.cast(end_logits, dtype=tf.float32),
        from_logits=True)

    loss = (tf.reduce_mean(start_loss) + tf.reduce_mean(end_loss)) / 2
    return loss

A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
116
117
118
119
120
121
  def _preprocess_eval_data(self, params):
    eval_examples = self.squad_lib.read_squad_examples(
        input_file=params.input_path,
        is_training=False,
        version_2_with_negative=params.version_2_with_negative)

A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
122
123
124
125
126
    temp_file_path = params.input_preprocessed_data_path or self.logging_dir
    if not temp_file_path:
      raise ValueError('You must specify a temporary directory, either in '
                       'params.input_preprocessed_data_path or logging_dir to '
                       'store intermediate evaluation TFRecord data.')
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
    eval_writer = self.squad_lib.FeatureWriter(
        filename=os.path.join(temp_file_path, 'eval.tf_record'),
        is_training=False)
    eval_features = []

    def _append_feature(feature, is_padding):
      if not is_padding:
        eval_features.append(feature)
      eval_writer.process_feature(feature)

    kwargs = dict(
        examples=eval_examples,
        tokenizer=tokenization.FullTokenizer(
            vocab_file=params.vocab_file,
            do_lower_case=params.do_lower_case),
        max_seq_length=params.seq_length,
        doc_stride=params.doc_stride,
        max_query_length=params.query_length,
        is_training=False,
        output_fn=_append_feature,
        batch_size=params.global_batch_size)
    if params.tokenization == 'SentencePiece':
      # squad_lib_sp requires one more argument 'do_lower_case'.
      kwargs['do_lower_case'] = params.do_lower_case

    eval_dataset_size = self.squad_lib.convert_examples_to_features(**kwargs)
    eval_writer.close()

    logging.info('***** Evaluation input stats *****')
    logging.info('  Num orig examples = %d', len(eval_examples))
    logging.info('  Num split examples = %d', len(eval_features))
    logging.info('  Batch size = %d', params.global_batch_size)
    logging.info('  Dataset size = %d', eval_dataset_size)

    return eval_writer.filename, eval_examples, eval_features

A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
163
164
165
  def build_inputs(self, params, input_context=None):
    """Returns tf.data.Dataset for sentence_prediction task."""
    if params.input_path == 'dummy':
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
166
      # Dummy training data for unit test.
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
      def dummy_data(_):
        dummy_ids = tf.zeros((1, params.seq_length), dtype=tf.int32)
        x = dict(
            input_word_ids=dummy_ids,
            input_mask=dummy_ids,
            input_type_ids=dummy_ids)
        y = dict(
            start_positions=tf.constant(0, dtype=tf.int32),
            end_positions=tf.constant(1, dtype=tf.int32))
        return (x, y)

      dataset = tf.data.Dataset.range(1)
      dataset = dataset.repeat()
      dataset = dataset.map(
          dummy_data, num_parallel_calls=tf.data.experimental.AUTOTUNE)
      return dataset

A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
184
    if params.is_training:
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
185
      dataloader_params = params
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
186
    else:
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
187
      input_path = self._tf_record_input_path
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
188
      dataloader_params = params.replace(input_path=input_path)
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
189

A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
190
191
    return data_loader_factory.get_data_loader(
        dataloader_params).load(input_context)
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217

  def build_metrics(self, training=None):
    del training
    # TODO(lehou): a list of metrics doesn't work the same as in compile/fit.
    metrics = [
        tf.keras.metrics.SparseCategoricalAccuracy(
            name='start_position_accuracy'),
        tf.keras.metrics.SparseCategoricalAccuracy(
            name='end_position_accuracy'),
    ]
    return metrics

  def process_metrics(self, metrics, labels, model_outputs):
    metrics = dict([(metric.name, metric) for metric in metrics])
    start_logits, end_logits = model_outputs
    metrics['start_position_accuracy'].update_state(
        labels['start_positions'], start_logits)
    metrics['end_position_accuracy'].update_state(
        labels['end_positions'], end_logits)

  def process_compiled_metrics(self, compiled_metrics, labels, model_outputs):
    start_logits, end_logits = model_outputs
    compiled_metrics.update_state(
        y_true=labels,  # labels has keys 'start_positions' and 'end_positions'.
        y_pred={'start_positions': start_logits, 'end_positions': end_logits})

A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
  def validation_step(self, inputs, model: tf.keras.Model, metrics=None):
    features, _ = inputs
    unique_ids = features.pop('unique_ids')
    model_outputs = self.inference_step(features, model)
    start_logits, end_logits = model_outputs
    logs = {
        self.loss: 0.0,  # TODO(lehou): compute the real validation loss.
        'unique_ids': unique_ids,
        'start_logits': start_logits,
        'end_logits': end_logits,
    }
    return logs

  raw_aggregated_result = collections.namedtuple(
      'RawResult', ['unique_id', 'start_logits', 'end_logits'])

  def aggregate_logs(self, state=None, step_outputs=None):
    assert step_outputs is not None, 'Got no logs from self.validation_step.'
    if state is None:
      state = []

    for unique_ids, start_logits, end_logits in zip(
        step_outputs['unique_ids'],
        step_outputs['start_logits'],
        step_outputs['end_logits']):
      u_ids, s_logits, e_logits = (
          unique_ids.numpy(), start_logits.numpy(), end_logits.numpy())
      if u_ids.size == 1:
        u_ids = [u_ids]
        s_logits = [s_logits]
        e_logits = [e_logits]
      for values in zip(u_ids, s_logits, e_logits):
        state.append(self.raw_aggregated_result(
            unique_id=values[0],
            start_logits=values[1].tolist(),
            end_logits=values[2].tolist()))
    return state

  def reduce_aggregated_logs(self, aggregated_logs):
    all_predictions, _, scores_diff = (
        self.squad_lib.postprocess_output(
            self._eval_examples,
            self._eval_features,
            aggregated_logs,
            self.task_config.n_best_size,
            self.task_config.max_answer_length,
            self.task_config.validation_data.do_lower_case,
            version_2_with_negative=(
                self.task_config.validation_data.version_2_with_negative),
            null_score_diff_threshold=(
                self.task_config.null_score_diff_threshold),
            verbose=False))

    with tf.io.gfile.GFile(
        self.task_config.validation_data.input_path, 'r') as reader:
      dataset_json = json.load(reader)
      pred_dataset = dataset_json['data']
    if self.task_config.validation_data.version_2_with_negative:
      eval_metrics = squad_evaluate_v2_0.evaluate(
          pred_dataset, all_predictions, scores_diff)
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
278
279
280
281
282
283
284
285
286
      # Filter out useless metrics, such as start_position_accuracy that
      # we did not actually compute.
      eval_metrics = {
          'exact_match': eval_metrics['final_exact'],
          'exact_match_threshold': eval_metrics['final_exact_thresh'],
          'final_f1': eval_metrics['final_f1'] / 100.0,  # scale back to [0, 1].
          'f1_threshold': eval_metrics['final_f1_thresh'],
          'has_answer_exact_match': eval_metrics['HasAns_exact'],
          'has_answer_f1': eval_metrics['HasAns_f1']}
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
287
288
    else:
      eval_metrics = squad_evaluate_v1_1.evaluate(pred_dataset, all_predictions)
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
289
290
291
292
      # Filter out useless metrics, such as start_position_accuracy that
      # we did not actually compute.
      eval_metrics = {'exact_match': eval_metrics['exact_match'],
                      'final_f1': eval_metrics['final_f1']}
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
293
    return eval_metrics