masked_lm.py 6.67 KB
Newer Older
Hongkun Yu's avatar
Hongkun Yu committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
# Lint as: python3
# Copyright 2020 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Masked language task."""
import dataclasses
import tensorflow as tf

from official.core import base_task
Abdullah Rashwan's avatar
Abdullah Rashwan committed
21
from official.core import task_factory
Hongkun Yu's avatar
Hongkun Yu committed
22
23
from official.modeling.hyperparams import config_definitions as cfg
from official.nlp.configs import bert
Chen Chen's avatar
Chen Chen committed
24
from official.nlp.data import data_loader_factory
Hongkun Yu's avatar
Hongkun Yu committed
25
26
27
28
29


@dataclasses.dataclass
class MaskedLMConfig(cfg.TaskConfig):
  """The model config."""
Pengchong Jin's avatar
Pengchong Jin committed
30
  model: bert.BertPretrainerConfig = bert.BertPretrainerConfig(cls_heads=[
Hongkun Yu's avatar
Hongkun Yu committed
31
32
33
34
35
36
37
      bert.ClsHeadConfig(
          inner_dim=768, num_classes=2, dropout_rate=0.1, name='next_sentence')
  ])
  train_data: cfg.DataConfig = cfg.DataConfig()
  validation_data: cfg.DataConfig = cfg.DataConfig()


Abdullah Rashwan's avatar
Abdullah Rashwan committed
38
@task_factory.register_task_cls(MaskedLMConfig)
Hongkun Yu's avatar
Hongkun Yu committed
39
40
41
class MaskedLMTask(base_task.Task):
  """Mock task object for testing."""

A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
42
43
44
  def build_model(self, params=None):
    params = params or self.task_config.model
    return bert.instantiate_pretrainer_from_cfg(params)
Hongkun Yu's avatar
Hongkun Yu committed
45
46

  def build_losses(self,
47
                   labels,
Hongkun Yu's avatar
Hongkun Yu committed
48
49
50
51
                   model_outputs,
                   metrics,
                   aux_losses=None) -> tf.Tensor:
    metrics = dict([(metric.name, metric) for metric in metrics])
52
53
54
55
56
57
58
59
    lm_prediction_losses = tf.keras.losses.sparse_categorical_crossentropy(
        labels['masked_lm_ids'],
        tf.cast(model_outputs['lm_output'], tf.float32),
        from_logits=True)
    lm_label_weights = labels['masked_lm_weights']
    lm_numerator_loss = tf.reduce_sum(lm_prediction_losses * lm_label_weights)
    lm_denominator_loss = tf.reduce_sum(lm_label_weights)
    mlm_loss = tf.math.divide_no_nan(lm_numerator_loss, lm_denominator_loss)
Hongkun Yu's avatar
Hongkun Yu committed
60
    metrics['lm_example_loss'].update_state(mlm_loss)
61
62
    if 'next_sentence_labels' in labels:
      sentence_labels = labels['next_sentence_labels']
Hongkun Yu's avatar
Hongkun Yu committed
63
64
      sentence_outputs = tf.cast(
          model_outputs['next_sentence'], dtype=tf.float32)
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
65
66
67
68
      sentence_loss = tf.reduce_mean(
          tf.keras.losses.sparse_categorical_crossentropy(sentence_labels,
                                                          sentence_outputs,
                                                          from_logits=True))
Hongkun Yu's avatar
Hongkun Yu committed
69
70
71
72
73
74
75
76
77
78
79
80
      metrics['next_sentence_loss'].update_state(sentence_loss)
      total_loss = mlm_loss + sentence_loss
    else:
      total_loss = mlm_loss

    if aux_losses:
      total_loss += tf.add_n(aux_losses)
    return total_loss

  def build_inputs(self, params, input_context=None):
    """Returns tf.data.Dataset for pretraining."""
    if params.input_path == 'dummy':
81

Hongkun Yu's avatar
Hongkun Yu committed
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
      def dummy_data(_):
        dummy_ids = tf.zeros((1, params.seq_length), dtype=tf.int32)
        dummy_lm = tf.zeros((1, params.max_predictions_per_seq), dtype=tf.int32)
        return dict(
            input_word_ids=dummy_ids,
            input_mask=dummy_ids,
            input_type_ids=dummy_ids,
            masked_lm_positions=dummy_lm,
            masked_lm_ids=dummy_lm,
            masked_lm_weights=tf.cast(dummy_lm, dtype=tf.float32),
            next_sentence_labels=tf.zeros((1, 1), dtype=tf.int32))

      dataset = tf.data.Dataset.range(1)
      dataset = dataset.repeat()
      dataset = dataset.map(
          dummy_data, num_parallel_calls=tf.data.experimental.AUTOTUNE)
      return dataset

Chen Chen's avatar
Chen Chen committed
100
    return data_loader_factory.get_data_loader(params).load(input_context)
Hongkun Yu's avatar
Hongkun Yu committed
101
102
103
104

  def build_metrics(self, training=None):
    del training
    metrics = [
105
        tf.keras.metrics.SparseCategoricalAccuracy(name='masked_lm_accuracy'),
Hongkun Yu's avatar
Hongkun Yu committed
106
107
108
109
110
111
112
113
114
115
        tf.keras.metrics.Mean(name='lm_example_loss')
    ]
    # TODO(hongkuny): rethink how to manage metrics creation with heads.
    if self.task_config.train_data.use_next_sentence_label:
      metrics.append(
          tf.keras.metrics.SparseCategoricalAccuracy(
              name='next_sentence_accuracy'))
      metrics.append(tf.keras.metrics.Mean(name='next_sentence_loss'))
    return metrics

116
  def process_metrics(self, metrics, labels, model_outputs):
Hongkun Yu's avatar
Hongkun Yu committed
117
118
    metrics = dict([(metric.name, metric) for metric in metrics])
    if 'masked_lm_accuracy' in metrics:
119
120
121
      metrics['masked_lm_accuracy'].update_state(labels['masked_lm_ids'],
                                                 model_outputs['lm_output'],
                                                 labels['masked_lm_weights'])
Hongkun Yu's avatar
Hongkun Yu committed
122
123
    if 'next_sentence_accuracy' in metrics:
      metrics['next_sentence_accuracy'].update_state(
124
          labels['next_sentence_labels'], model_outputs['next_sentence'])
Hongkun Yu's avatar
Hongkun Yu committed
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142

  def train_step(self, inputs, model: tf.keras.Model,
                 optimizer: tf.keras.optimizers.Optimizer, metrics):
    """Does forward and backward.

    Args:
      inputs: a dictionary of input tensors.
      model: the model, forward pass definition.
      optimizer: the optimizer for this training step.
      metrics: a nested structure of metrics objects.

    Returns:
      A dictionary of logs.
    """
    with tf.GradientTape() as tape:
      outputs = model(inputs, training=True)
      # Computes per-replica loss.
      loss = self.build_losses(
143
          labels=inputs,
Hongkun Yu's avatar
Hongkun Yu committed
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
          model_outputs=outputs,
          metrics=metrics,
          aux_losses=model.losses)
      # Scales loss as the default gradients allreduce performs sum inside the
      # optimizer.
      # TODO(b/154564893): enable loss scaling.
      # scaled_loss = loss / tf.distribute.get_strategy().num_replicas_in_sync
    tvars = model.trainable_variables
    grads = tape.gradient(loss, tvars)
    optimizer.apply_gradients(list(zip(grads, tvars)))
    self.process_metrics(metrics, inputs, outputs)
    return {self.loss: loss}

  def validation_step(self, inputs, model: tf.keras.Model, metrics):
    """Validatation step.

    Args:
      inputs: a dictionary of input tensors.
      model: the keras.Model.
      metrics: a nested structure of metrics objects.

    Returns:
      A dictionary of logs.
    """
    outputs = self.inference_step(inputs, model)
    loss = self.build_losses(
170
        labels=inputs,
Hongkun Yu's avatar
Hongkun Yu committed
171
172
173
174
175
        model_outputs=outputs,
        metrics=metrics,
        aux_losses=model.losses)
    self.process_metrics(metrics, inputs, outputs)
    return {self.loss: loss}