"sgl-kernel/tests/test_sparse_flash_attn.py" did not exist on "bc92107b03a3a87c6b41d98ac9581749f0800073"
mobile_models.py 26.4 KB
Newer Older
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
# Copyright 2021 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

"""Mobile model builder."""

from typing import List, Optional, Sequence, Text

import pyglove as pg
from pyglove.tensorflow import keras
from pyglove.tensorflow import selections

from official.projects.tunas.modeling.layers import nn_blocks


class _MobileModel(keras.Model):
  """Mobile model."""

  def __init__(
      self,
      stem_conv_filters: nn_blocks.Filters,
      blocks: Sequence[keras.layers.Layer],
      feature_conv_filters: nn_blocks.Filters,
      kernel_initializer=keras.initializers.he_normal(),
      dense_initializer=keras.initializers.random_normal(stddev=0.01),
      # NOTE(daiyip): Keras L2 implementation is 2x of
      # tf.contrib.keras.layers.l2_regularizer.
      kernel_regularizer=keras.regularizers.l2(4e-5 * 0.5),
      normalization=keras.layers.BatchNormalization(
          momentum=0.99, epsilon=0.001),
      activation=keras.layers.ReLU(),
      dropout_rate: float = 0.,
      num_classes: Optional[int] = 1001,
      name: Optional[Text] = None):
    """Mobile model.

    Args:
      stem_conv_filters: Filter size for the stem conv unit.
      blocks: A list of layers as residual blocks after the stem layer.
      feature_conv_filters: Number of penultimate features.
      kernel_initializer: Kernel initializer used for the stem and featurizer.
      dense_initializer: Kernel initializer used for the classification layer.
      kernel_regularizer: Regularizer for the layers in the network.
      normalization: Normalization layer used in the network.
      activation: Activation layer used in the network.
      dropout_rate: Dropout rate for the penultimate features, applicable only
        when `num_classes` is not None.
      num_classes: Number of classes for the classification model. If None,
        the classification layer will be excluded.
      name: Name of the model.

    Returns:
      A list of tensors as model outputs.
        If `num_classes` is not None, the list is [logits, penultimate_features]
          plus lower-level features.
        Otherwise the list is [penultimate_features] plus lower-level features.
    """
    super().__init__(name=name)
    self._stem = nn_blocks.conv2d(
        filters=stem_conv_filters,
        kernel_size=(3, 3),
        strides=(2, 2),
        padding='same',
        kernel_initializer=kernel_initializer,
        kernel_regularizer=kernel_regularizer,
        use_bias=False,
        normalization=normalization,
        activation=activation,
        name='stem')

    # An ugly hack to track each layer from the `blocks`, since Keras does not
    # track `tf.keras.layers.Layer` objects from container-type members.
    for i, block in enumerate(blocks):
      setattr(self, '_blocks_{:d}'.format(i), block)
    self._blocks = blocks

    self._featurizer = nn_blocks.conv2d(
        filters=feature_conv_filters,
        kernel_size=(1, 1),
        padding='same',
        kernel_initializer=kernel_initializer,
        kernel_regularizer=kernel_regularizer,
        use_bias=False,
        normalization=normalization,
        activation=activation,
        name='features')

    self._global_pooling = keras.layers.GlobalAveragePooling2D()
    if num_classes is not None:
      self._dropout = keras.layers.Dropout(dropout_rate)
      self._classification_head = keras.layers.Dense(
          num_classes,
          kernel_initializer=dense_initializer,
          use_bias=True,
          name='classification_head')
    self.num_classes = num_classes

  def call(self, inputs):
    x = self._stem(inputs)
    lower_level_features = []
    for block in self._blocks:
      x = block(x)
      if isinstance(x, (list, tuple)):
        x, features = x[0], x[1:]
        lower_level_features.extend(list(features))

    x = self._featurizer(x)
    x = self._global_pooling(x)
    penultimate_features = x
    if self.num_classes is None:
      return [penultimate_features] + lower_level_features
    else:
      x = self._dropout(x)
      x = self._classification_head(x)
      return [x, penultimate_features] + lower_level_features


MobileModel = pg.symbolize(_MobileModel, class_name='MobileModel')


class _MobileBlock(keras.Model):
  """Mobile block."""

  def __init__(
      self,
      # We use List instead of Sequence here since Tuple cannot be
      # modified using rebind.
      sublayers: List[keras.layers.Layer],
      filters: nn_blocks.Filters,
      name: Optional[Text] = None):
    """Mobile block.

    Args:
      sublayers: Sublayers for the block.
      filters: Number of filters for the block. All sublayers will be using
        this filters.
      name: Name of the block.

    Returns:
      A tuple of 2 tensors (block output, features-before-downsampling)
    """
    super().__init__(name=name)
    self.sublayers = [s.clone(override={'filters': filters}) for s in sublayers]
    self.filters = filters

  def call(self, inputs):
    get_image_size = lambda x: (int(x.shape[1]), int(x.shape[2]))
    x = inputs
    image_size = get_image_size(x)
    features = []
    for layer in self.sublayers:
      x = layer(x)
      new_image_size = get_image_size(x)
      if new_image_size != image_size:
        features.append(x)
        image_size = new_image_size
    return tuple([x] + features)


MobileBlock = pg.symbolize(_MobileBlock, class_name='MobileBlock')


def search_model_v2(
    init_filters: Sequence[int],
    filters_multipliers: Optional[Sequence[float]] = None,
    filters_scale_factor: float = 1.0,
    filters_base: int = 8,
    se_ratios: Optional[List[float]] = None,
    num_classes: Optional[int] = 1001,
    normalization=keras.layers.BatchNormalization(momentum=0.0, epsilon=0.001),
    activation=keras.layers.ReLU(),
    dropout_rate: float = 0.,
    kernel_initializer=keras.initializers.he_normal(),
    depthwise_initializer=keras.initializers.depthwise_he_normal(),
    dense_initializer=keras.initializers.random_normal(stddev=0.01),
    # NOTE(daiyip): Keras L2 implementation is 2x of
    # tf.contrib.keras.layers.l2_regularizer.
    kernel_regularizer=keras.regularizers.l2(4e-5 * 0.5),
    name: Optional[Text] = 'search_mobile_model_v2'):
  """A searchable model derived from MobileNetV2.

  Args:
    init_filters: A list of integers (size=9) as the initial filter size of
      each mobile block.
    filters_multipliers: An optional list of floats as multipliers for the
      filters. If the list size is larger than 1, it is a search space including
      searching the filter sizes per block.
    filters_scale_factor: Additional scaling factor on top of
      filters_multipliers, this is to align with existing TuNAS codebase.
    filters_base: An integer as base to compute multiplied filters.
      Please see `layers.scale_filters` for details.
    se_ratios: Squeeze-and-excite ratios. If empty, SE is not used.
    num_classes: Number of classes for the classification model. If None,
      the classification layer will be excluded.
    normalization: Normalization layer used in the model.
    activation: Activation layer used in the model.
    dropout_rate: Dropout rate for the penultimate features, applicable only
      when `num_classes` is not None.
    kernel_initializer: Kernel initializer used for the Conv2D units
      in the model.
    depthwise_initializer: Kernel initializer used for DepthwiseConv2D units
      in the model.
    dense_initializer: Kernel initializer used for the classification layer.
    kernel_regularizer: Regularizer for the layers in the network.
    name: Name of the model, which will be used as the top name scope.

  Returns:
    A `MobileModel` object (a tf.keras.Model subclass) as the search model.
  """
  if not isinstance(init_filters, (tuple, list)) or len(init_filters) != 9:
    raise ValueError(
        '`init_filters` must be a sequence of 9. '
        'Encountered: %r.' % init_filters)

  se_ratios = [None] + (se_ratios if se_ratios else [])

  def _filters(x):
    filters = keras.layers.get_filters(x, filters_multipliers, filters_base)
    if filters_scale_factor != 1.0:
      # Up to now, filters will contain non-duplicated values. We will then
      # apply an additional filters scaling based on the candidates.
      # Please be aware of that this round of rescaling may result in duplicated
      # entries. We do not dedup these values to be compatible with original
      # TuNAS implementation.
      filters = keras.layers.maybe_oneof([
          keras.layers.get_filters(x, [filters_scale_factor], filters_base)
          for x in filters.candidates
      ], choice_type=keras.layers.ChoiceType.FILTERS)
    return filters

  def _mobile_layer(layer_index, strides, kernel_size,
                    expansion_factor, skippable=True):
    # Note(luoshixin): collapsed search space is not supported currently.
    candidates = []
    for i, (sr, f, k) in enumerate(
        selections.map_candidates([se_ratios, expansion_factor, kernel_size])):
      candidates.append(nn_blocks.inverted_bottleneck_with_se(
          # Placeholder, which will be modified at mobile_block level.
          filters=1,
          strides=strides,
          kernel_size=k,
          expansion_factor=f,
          se_ratio=sr,
          normalization=normalization,
          activation=activation,
          kernel_initializer=kernel_initializer,
          kernel_regularizer=kernel_regularizer,
          depthwise_initializer=depthwise_initializer,
          depthwise_regularizer=kernel_regularizer,
          name='inverted_bottleneck%d' % (i + 1)))

    if skippable:
      candidates.append(keras.layers.zeros())
    op = keras.layers.maybe_oneof(
        candidates,
        name=('switch' if skippable else ('switch%d' % (layer_index + 1))))
    if skippable:
      op = keras.layers.Residual(op, name='residual%d' % (layer_index + 1))
    return op

  # pylint: disable=unexpected-keyword-arg
  blocks = [
      MobileBlock([
          _mobile_layer(0, (1, 1), [(3, 3), (5, 5), (7, 7)], [1], False),
      ], _filters(init_filters[1]), name='block1'),
      MobileBlock([
          _mobile_layer(0, (2, 2), [(3, 3), (5, 5), (7, 7)], [3, 6], False),
          _mobile_layer(1, (1, 1), [(3, 3), (5, 5), (7, 7)], [3, 6]),
          _mobile_layer(2, (1, 1), [(3, 3), (5, 5), (7, 7)], [3, 6]),
          _mobile_layer(3, (1, 1), [(3, 3), (5, 5), (7, 7)], [3, 6]),
      ], _filters(init_filters[2]), name='block2'),
      MobileBlock([
          _mobile_layer(0, (2, 2), [(3, 3), (5, 5), (7, 7)], [3, 6], False),
          _mobile_layer(1, (1, 1), [(3, 3), (5, 5), (7, 7)], [3, 6]),
          _mobile_layer(2, (1, 1), [(3, 3), (5, 5), (7, 7)], [3, 6]),
          _mobile_layer(3, (1, 1), [(3, 3), (5, 5), (7, 7)], [3, 6]),
      ], _filters(init_filters[3]), name='block3'),
      MobileBlock([
          _mobile_layer(0, (2, 2), [(3, 3), (5, 5), (7, 7)], [3, 6], False),
          _mobile_layer(1, (1, 1), [(3, 3), (5, 5), (7, 7)], [3, 6]),
          _mobile_layer(2, (1, 1), [(3, 3), (5, 5), (7, 7)], [3, 6]),
          _mobile_layer(3, (1, 1), [(3, 3), (5, 5), (7, 7)], [3, 6]),
      ], _filters(init_filters[4]), name='block4'),
      MobileBlock([
          _mobile_layer(0, (1, 1), [(3, 3), (5, 5), (7, 7)], [3, 6], False),
          _mobile_layer(1, (1, 1), [(3, 3), (5, 5), (7, 7)], [3, 6]),
          _mobile_layer(2, (1, 1), [(3, 3), (5, 5), (7, 7)], [3, 6]),
          _mobile_layer(3, (1, 1), [(3, 3), (5, 5), (7, 7)], [3, 6]),
      ], _filters(init_filters[5]), name='block5'),
      MobileBlock([
          _mobile_layer(0, (2, 2), [(3, 3), (5, 5), (7, 7)], [3, 6], False),
          _mobile_layer(1, (1, 1), [(3, 3), (5, 5), (7, 7)], [3, 6]),
          _mobile_layer(2, (1, 1), [(3, 3), (5, 5), (7, 7)], [3, 6]),
          _mobile_layer(3, (1, 1), [(3, 3), (5, 5), (7, 7)], [3, 6]),
      ], _filters(init_filters[6]), name='block6'),
      MobileBlock([
          _mobile_layer(0, (1, 1), [(3, 3), (5, 5), (7, 7)], [3, 6], False),
      ], _filters(init_filters[7]), name='block7'),
  ]
  return MobileModel(   # pylint: disable=unexpected-keyword-arg
      stem_conv_filters=_filters(init_filters[0]),
      blocks=blocks,
      feature_conv_filters=_filters(init_filters[8]),
      kernel_initializer=kernel_initializer,
      dense_initializer=dense_initializer,
      kernel_regularizer=kernel_regularizer,
      normalization=normalization,
      activation=activation,
      dropout_rate=dropout_rate,
      num_classes=num_classes,
      name=name)


def static_model(
    search_model: MobileModel,
    dna: pg.DNA,
    use_stateful_batch_norm: bool = True) -> MobileModel:
  """Returns a static model from a search model and a DNA."""
  model = pg.template(search_model).decode(dna)
  return pg.patch_on_member(
      model,
      keras.layers.BatchNormalization, 'momentum',
      0.99 if use_stateful_batch_norm else 0.0)


def static_mobile_model(
    op_indices: Sequence[int],
    init_filters: Sequence[int],
    num_classes: int,
    weight_decay: float,
    dropout: float = 0.0,
    filters_multiplier: float = 1.0,
    name: Optional[Text] = None) -> MobileModel:
  """Create static mobile model."""
  assert len(op_indices) == 22
  # NOTE(daiyip): Regularizer value of Keras L2 implementation is 2x of
  # tf.contrib.keras.layers.l2_regularizer.
  search_model = search_model_v2(
      init_filters,
      num_classes=num_classes,
      filters_multipliers=[filters_multiplier],
      dropout_rate=dropout,
      kernel_regularizer=keras.regularizers.l2(weight_decay * 0.5),
      name=name)
  return static_model(search_model, pg.DNA.parse(list(op_indices)))


MOBILENET_V2_FILTERS = (32, 16, 24, 32, 64, 96, 160, 320, 1280)
MNASNET_FILTERS = (32, 16, 24, 40, 80, 96, 192, 320, 1280)
PROXYLESSNAS_GPU_FILTERS = (40, 24, 32, 56, 112, 128, 256, 432, 1728)
PROXYLESSNAS_CPU_FILTERS = (40, 24, 32, 48, 88, 104, 216, 360, 1432)
PROXYLESSNAS_MOBILE_FILTERS = (32, 16, 32, 40, 80, 96, 192, 320, 1280)
MOBILEDET_EDGE_TPU_FILTERS = (32, 16, 32, 48, 96, 96, 160, 192, 192)

MOBILENET_V2_OPERATIONS = (0, 3, 3, 6, 6, 3, 3, 3, 6, 3, 3,
                           3, 3, 3, 3, 3, 6, 3, 3, 3, 6, 3)
MNASNET_OPERATIONS = (0, 0, 0, 0, 6, 1, 1, 1, 6, 4, 4,
                      4, 6, 3, 3, 6, 6, 4, 4, 4, 4, 3)
PROXYLESSNAS_GPU_OPERATIONS = (0, 1, 6, 6, 6, 2, 6, 6, 0, 5, 6,
                               6, 1, 4, 6, 0, 1, 5, 5, 5, 4, 5)
PROXYLESSNAS_CPU_OPERATIONS = (0, 3, 0, 0, 0, 3, 0, 0, 1, 3, 6,
                               6, 0, 4, 0, 0, 0, 4, 1, 1, 0, 4)
PROXYLESSNAS_MOBILE_OPERATIONS = (0, 1, 0, 6, 6, 2, 0, 1, 1, 5, 1,
                                  1, 1, 4, 1, 1, 1, 5, 5, 2, 2, 5)

MOBILE_DEFAULT_FILTER_MULTIPLIERS = (0.5, 0.625, 0.75, 1.0, 1.25, 1.5, 2.0)
MOBILEDET_EDGE_TPU_FILTER_MULTIPLIERS = MOBILE_DEFAULT_FILTER_MULTIPLIERS


def mobilenet_v2(num_classes: Optional[int] = 1001,
                 weight_decay: float = 4e-5,
                 dropout: float = 0.0) -> MobileModel:
  """MobileNet v2."""
  return static_mobile_model(
      op_indices=MOBILENET_V2_OPERATIONS,
      init_filters=MOBILENET_V2_FILTERS,
      num_classes=num_classes,
      weight_decay=weight_decay,
      dropout=dropout,
      name='mobilenet_v2')


def mnasnet(num_classes: Optional[int] = 1001,
            weight_decay: float = 4e-5,
            dropout: float = 0.0) -> MobileModel:
  """MNASNet."""
  return static_mobile_model(
      op_indices=MNASNET_OPERATIONS,
      init_filters=MNASNET_FILTERS,
      num_classes=num_classes,
      weight_decay=weight_decay,
      dropout=dropout,
      name='mnasnet')


def proxyless_nas_gpu(num_classes: Optional[int] = 1001,
                      weight_decay: float = 4e-5,
                      dropout: float = 0.0) -> MobileModel:
  """ProxylessNAS searched for GPU."""
  return static_mobile_model(
      op_indices=PROXYLESSNAS_GPU_OPERATIONS,
      init_filters=PROXYLESSNAS_GPU_FILTERS,
      num_classes=num_classes,
      weight_decay=weight_decay,
      dropout=dropout,
      name='proxyless_nas_gpu')


def proxyless_nas_cpu(num_classes: Optional[int] = 1001,
                      weight_decay: float = 4e-5,
                      dropout: float = 0.0) -> MobileModel:
  """ProxylessNAS searched for CPU."""
  return static_mobile_model(
      op_indices=PROXYLESSNAS_CPU_OPERATIONS,
      init_filters=PROXYLESSNAS_CPU_FILTERS,
      num_classes=num_classes,
      weight_decay=weight_decay,
      dropout=dropout,
      name='proxyless_nas_cpu')


def proxyless_nas_mobile(num_classes: Optional[int] = 1001,
                         weight_decay: float = 4e-5,
                         dropout: float = 0.0) -> MobileModel:
  """ProxylessNAS searched for mobile device."""
  return static_mobile_model(
      op_indices=PROXYLESSNAS_MOBILE_OPERATIONS,
      init_filters=PROXYLESSNAS_MOBILE_FILTERS,
      num_classes=num_classes,
      weight_decay=weight_decay,
      dropout=dropout,
      name='proxyless_nas_mobile')


# Search spaces from the TuNAS paper:
# pylint:disable=line-too-long
# Reference:
#  Gabriel Bender & Hanxiao Liu, et al. Can Weight Sharing Outperform Random Architecture Search? An Investigation With TuNAS
#  https://openaccess.thecvf.com/content_CVPR_2020/html/Bender_Can_Weight_Sharing_Outperform_Random_Architecture_Search_An_Investigation_With_CVPR_2020_paper.html
# pylint:enable=line-too-long


def proxylessnas_search(
    num_classes: Optional[int] = 1001) -> MobileModel:
  """Original Proxyless NAS search space."""
  return search_model_v2(
      init_filters=PROXYLESSNAS_MOBILE_FILTERS,
      num_classes=num_classes,
      name='proxylessnas_search')


def proxylessnas_with_filters_doubled_every_block(
    num_classes: Optional[int] = 1001) -> MobileModel:
  """A variant search space of `proxylessnas_search`.

  In this search space the number of filters is doubled in each consecutive
  block. This search space is a baseline in the Tunas paper to evaluate the
  effect of searching over filter sizes compared to traditional heuristics.

  Args:
    num_classes: Number of classes for the classification model. If None,
      the classification layer will be excluded.

  Returns:
    A `MobileModel` object (a tf.keras.Model subclass) as the search model.
  """
  return search_model_v2(
      init_filters=(16, 16, 16, 32, 64, 128, 256, 512, 1024),
      num_classes=num_classes,
      name='proxylessnas_with_filters_doubled_every_block_search')


def proxylessnas_with_filters_doubled_every_stride2(
    num_classes: Optional[int] = 1001) -> MobileModel:
  """A variant search space of `proxylessnas_search`.

  This search space is an extension of the ProxylessNas search space where it is
  made possible to search over the output filter sizes.

  Args:
    num_classes: Number of classes for the classification model. If None,
      the classification layer will be excluded.

  Returns:
    A `MobileModel` object (a tf.keras.Model subclass) as the search model.
  """
  return search_model_v2(
      init_filters=(16, 16, 32, 64, 128, 128, 256, 256, 512),
      num_classes=num_classes,
      name='proxylessnas_with_filters_doubled_every_stride2_search')


def proxylessnas_outfilters_search(
    num_classes: Optional[int] = 1001) -> MobileModel:
  """A variant search space of `proxylessnas_search`.

  This search space is an extension of the ProxylessNas search space where it is
  made possible to search over the output filter sizes.

  Args:
    num_classes: Number of classes for the classification model. If None,
      the classification layer will be excluded.

  Returns:
    A `MobileModel` object (a tf.keras.Model subclass) as the search model.
  """
  return search_model_v2(
      init_filters=(16, 16, 16, 32, 64, 128, 256, 512, 1024),
      filters_multipliers=(0.5, 0.625, 0.75, 1.0, 1.25, 1.5, 2.0),
      num_classes=num_classes,
      name='proxylessnas_outfilters_search')


def proxylessnas_with_mobilenet_v2_filters_search(
    num_classes: Optional[int] = 1001) -> MobileModel:
  """Original Proxyless NAS search space."""
  return search_model_v2(
      init_filters=MOBILENET_V2_FILTERS,
      num_classes=num_classes,
      name='proxylessnas_with_mobilenet_v2_filters_search')


def mobilenet_v2_filters_search(
    num_classes: Optional[int] = 1001) -> MobileModel:
  """MobileNetV2 filters search."""
  search_model = search_model_v2(
      init_filters=MOBILENET_V2_FILTERS,
      filters_multipliers=MOBILE_DEFAULT_FILTER_MULTIPLIERS,
      num_classes=num_classes,
      name='mobilenet_v2_filters_search')
  def select_ops(x):
    return keras.layers.get_choice_type(x) == keras.layers.ChoiceType.OP
  return pg.materialize(
      search_model,
      pg.DNA.parse(list(MOBILENET_V2_OPERATIONS)),
      where=select_ops)


def tunas_search_model(ssd: Text) -> MobileModel:  # pytype: disable=invalid-annotation
  """Get TuNAS search model by search space name."""
  # Note(luoshixin): collapsed search space is not supported, and hence
  # not migrated currently.
  ssd_map = {
      'proxylessnas_search': proxylessnas_search,
      'proxylessnas_with_filters_doubled_every_block':
          proxylessnas_with_filters_doubled_every_block,
      'proxylessnas_with_filters_doubled_every_stride2':
          proxylessnas_with_filters_doubled_every_stride2,
      'proxylessnas_outfilters_search': proxylessnas_outfilters_search,
  }
  if ssd not in ssd_map:
    raise ValueError('Unsupported TuNAS search space %r.' % ssd)
  return ssd_map[ssd]()


def _swap_op_choices(
    model,
    initial_op_choices,
    body_op_choices):
  """Helper method to swap op choices in a MobileModel."""
  context = dict(initial_op=True)
  def swap_ops(key_path: pg.KeyPath, value, parent):
    del key_path
    # Skip static values and non-operation choices.
    if (not isinstance(value, pg.hyper.OneOf)
        or keras.layers.get_choice_type(value) != keras.layers.ChoiceType.OP):
      return value

    sample_ibn = value.candidates[0]
    assert isinstance(sample_ibn, nn_blocks.inverted_bottleneck), sample_ibn

    if context['initial_op']:
      candidates = pg.clone(initial_op_choices, deep=True)
      context['initial_op'] = False
    else:
      candidates = pg.clone(body_op_choices, deep=True)

    for c in candidates:
      keras.layers.inherit_hyperparameters_from(c, sample_ibn, [
          'filters', 'strides', 'kernel_initializer', 'kernel_regularizer',
          'depthwise_initializer', 'depthwise_regularizer',
          'normalization', 'activation'
      ])
    if isinstance(parent, keras.layers.Residual):
      candidates.append(keras.layers.zeros())
    return keras.layers.maybe_oneof(candidates)
  return model.rebind(swap_ops)


def mobiledet_edge_tpu_search(num_classes: Optional[int] = 1001,
                              weight_decay: float = 4e-5,
                              dropout: float = 0.0,
                              filters_scale_factor: float = 1.0,
                              filters_base: int = 8,
                              filters_multipliers: Sequence[float] = (
                                  MOBILEDET_EDGE_TPU_FILTER_MULTIPLIERS),
                              expansion_multipliers: Sequence[int] = (4, 8),
                              name: Text = 'mobiledet_edge_tpu_search'):
  """Return search model for MOBILEDET_EDGE_TPU search space from TuNAS."""
  def _op_choices(
      kernel_sizes,
      expansion_factors,
      tucker_kernel_sizes,
      tucker_input_ratios,
      tucker_output_ratios):
    ops = []
    # Add choices from regular inverted bottleneck.
    for i, (ef, ks) in enumerate(
        selections.map_candidates([expansion_factors, kernel_sizes])):
      ops.append(nn_blocks.inverted_bottleneck.partial(
          kernel_size=ks, expansion_factor=ef,
          name='inverted_bottleneck%d' % i))

    # Add choices from fused inverted bottleneck.
    for i, (ef, ks) in enumerate(selections.map_candidates(
        [expansion_factors, kernel_sizes])):
      ops.append(nn_blocks.fused_inverted_bottleneck.partial(
          kernel_size=ks, expansion_factor=ef,
          name='fused_inverted_bottleneck%d' % i))

    # Add choices from tucker bottleneck.
    for i, (iratio, ks, oratio) in enumerate(selections.map_candidates([
        tucker_input_ratios, tucker_kernel_sizes, tucker_output_ratios])):
      ops.append(nn_blocks.tucker_bottleneck.partial(
          kernel_size=ks, input_scale_ratio=iratio,
          output_scale_ratio=oratio, name='tucker_bottleneck%d' % i))
    return ops

  initial_op_choices = _op_choices(
      kernel_sizes=[(3, 3), (5, 5)],
      expansion_factors=[1],
      tucker_kernel_sizes=[(3, 3)],
      tucker_input_ratios=[0.25, 0.75],
      tucker_output_ratios=[0.25, 0.75])
  body_op_choices = _op_choices(
      kernel_sizes=[(3, 3), (5, 5)],
      expansion_factors=expansion_multipliers,
      tucker_kernel_sizes=[(3, 3)],
      tucker_input_ratios=[0.25, 0.75],
      tucker_output_ratios=[0.25, 0.75])
  search_model = search_model_v2(
      init_filters=MOBILEDET_EDGE_TPU_FILTERS,
      filters_multipliers=filters_multipliers,
      filters_scale_factor=filters_scale_factor,
      filters_base=filters_base,
      num_classes=num_classes,
      dropout_rate=dropout,
      kernel_regularizer=keras.regularizers.l2(weight_decay * 0.5),
      name=name)
  return _swap_op_choices(search_model, initial_op_choices, body_op_choices)


# This arch string is copied from: tunas/detection_search_space.py
DEFAULT_MOBILEDET_EDGE_TPU_ARCH_STRING = (
    '2:5:1:6:4:6:4:0:7:4:4:4:2:2:2:4:4:2:3:3:2:2:3:3:2:1:2:2:3:6:5')


def mobiledet_edge_tpu(
    arch_string: Text = DEFAULT_MOBILEDET_EDGE_TPU_ARCH_STRING,
    num_classes: Optional[int] = 1001,
    filters_scale_factor: float = 1.0,
    filters_base: int = 8,
    weight_decay: float = 4e-5,
    dropout: float = 0.0,
    filters_multipliers: Sequence[float] = (
        MOBILEDET_EDGE_TPU_FILTER_MULTIPLIERS),
    expansion_multipliers: Sequence[int] = (4, 8),
    name: Text = 'mobiledet_edge_tpu') -> MobileModel:
  """Static model from MobileDet Edge TPU search space."""
  dna = pg.DNA.parse([int(v) for v in arch_string.split(':')])
  search_model = mobiledet_edge_tpu_search(
      num_classes=num_classes,
      weight_decay=weight_decay,
      dropout=dropout,
      filters_scale_factor=filters_scale_factor,
      filters_base=filters_base,
      filters_multipliers=filters_multipliers,
      expansion_multipliers=expansion_multipliers,
      name=name)
  return static_model(search_model, dna)