masked_lm.py 7.31 KB
Newer Older
Hongkun Yu's avatar
Hongkun Yu committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
# Lint as: python3
# Copyright 2020 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Masked language task."""
Hongkun Yu's avatar
Hongkun Yu committed
17

Hongkun Yu's avatar
Hongkun Yu committed
18
19
20
21
import dataclasses
import tensorflow as tf

from official.core import base_task
Abdullah Rashwan's avatar
Abdullah Rashwan committed
22
from official.core import task_factory
Hongkun Yu's avatar
Hongkun Yu committed
23
from official.modeling import tf_utils
Hongkun Yu's avatar
Hongkun Yu committed
24
25
from official.modeling.hyperparams import config_definitions as cfg
from official.nlp.configs import bert
Hongkun Yu's avatar
Hongkun Yu committed
26
from official.nlp.configs import encoders
Chen Chen's avatar
Chen Chen committed
27
from official.nlp.data import data_loader_factory
Hongkun Yu's avatar
Hongkun Yu committed
28
29
from official.nlp.modeling import layers
from official.nlp.modeling import models
Hongkun Yu's avatar
Hongkun Yu committed
30
31
32
33
34


@dataclasses.dataclass
class MaskedLMConfig(cfg.TaskConfig):
  """The model config."""
Hongkun Yu's avatar
Hongkun Yu committed
35
  model: bert.PretrainerConfig = bert.PretrainerConfig(cls_heads=[
Hongkun Yu's avatar
Hongkun Yu committed
36
37
38
39
40
41
42
      bert.ClsHeadConfig(
          inner_dim=768, num_classes=2, dropout_rate=0.1, name='next_sentence')
  ])
  train_data: cfg.DataConfig = cfg.DataConfig()
  validation_data: cfg.DataConfig = cfg.DataConfig()


Abdullah Rashwan's avatar
Abdullah Rashwan committed
43
@task_factory.register_task_cls(MaskedLMConfig)
Hongkun Yu's avatar
Hongkun Yu committed
44
class MaskedLMTask(base_task.Task):
Hongkun Yu's avatar
Hongkun Yu committed
45
  """Task object for Mask language modeling."""
Hongkun Yu's avatar
Hongkun Yu committed
46

A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
47
  def build_model(self, params=None):
Hongkun Yu's avatar
Hongkun Yu committed
48
49
50
51
52
53
54
55
56
57
58
59
    config = params or self.task_config.model
    encoder_cfg = config.encoder
    encoder_network = encoders.build_encoder(encoder_cfg)
    cls_heads = [
        layers.ClassificationHead(**cfg.as_dict()) for cfg in config.cls_heads
    ] if config.cls_heads else []
    return models.BertPretrainerV2(
        mlm_activation=tf_utils.get_activation(config.mlm_activation),
        mlm_initializer=tf.keras.initializers.TruncatedNormal(
            stddev=config.mlm_initializer_range),
        encoder_network=encoder_network,
        classification_heads=cls_heads)
Hongkun Yu's avatar
Hongkun Yu committed
60
61

  def build_losses(self,
62
                   labels,
Hongkun Yu's avatar
Hongkun Yu committed
63
64
65
                   model_outputs,
                   metrics,
                   aux_losses=None) -> tf.Tensor:
Terry Huang's avatar
Terry Huang committed
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
    with tf.name_scope('MaskedLMTask/losses'):
      metrics = dict([(metric.name, metric) for metric in metrics])
      lm_prediction_losses = tf.keras.losses.sparse_categorical_crossentropy(
          labels['masked_lm_ids'],
          tf.cast(model_outputs['lm_output'], tf.float32),
          from_logits=True)
      lm_label_weights = labels['masked_lm_weights']
      lm_numerator_loss = tf.reduce_sum(lm_prediction_losses *
                                        lm_label_weights)
      lm_denominator_loss = tf.reduce_sum(lm_label_weights)
      mlm_loss = tf.math.divide_no_nan(lm_numerator_loss, lm_denominator_loss)
      metrics['lm_example_loss'].update_state(mlm_loss)
      if 'next_sentence_labels' in labels:
        sentence_labels = labels['next_sentence_labels']
        sentence_outputs = tf.cast(
            model_outputs['next_sentence'], dtype=tf.float32)
        sentence_loss = tf.reduce_mean(
            tf.keras.losses.sparse_categorical_crossentropy(
                sentence_labels, sentence_outputs, from_logits=True))
        metrics['next_sentence_loss'].update_state(sentence_loss)
        total_loss = mlm_loss + sentence_loss
      else:
        total_loss = mlm_loss

      if aux_losses:
        total_loss += tf.add_n(aux_losses)
      return total_loss
Hongkun Yu's avatar
Hongkun Yu committed
93
94
95
96

  def build_inputs(self, params, input_context=None):
    """Returns tf.data.Dataset for pretraining."""
    if params.input_path == 'dummy':
97

Hongkun Yu's avatar
Hongkun Yu committed
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
      def dummy_data(_):
        dummy_ids = tf.zeros((1, params.seq_length), dtype=tf.int32)
        dummy_lm = tf.zeros((1, params.max_predictions_per_seq), dtype=tf.int32)
        return dict(
            input_word_ids=dummy_ids,
            input_mask=dummy_ids,
            input_type_ids=dummy_ids,
            masked_lm_positions=dummy_lm,
            masked_lm_ids=dummy_lm,
            masked_lm_weights=tf.cast(dummy_lm, dtype=tf.float32),
            next_sentence_labels=tf.zeros((1, 1), dtype=tf.int32))

      dataset = tf.data.Dataset.range(1)
      dataset = dataset.repeat()
      dataset = dataset.map(
          dummy_data, num_parallel_calls=tf.data.experimental.AUTOTUNE)
      return dataset

Chen Chen's avatar
Chen Chen committed
116
    return data_loader_factory.get_data_loader(params).load(input_context)
Hongkun Yu's avatar
Hongkun Yu committed
117
118
119
120

  def build_metrics(self, training=None):
    del training
    metrics = [
121
        tf.keras.metrics.SparseCategoricalAccuracy(name='masked_lm_accuracy'),
Hongkun Yu's avatar
Hongkun Yu committed
122
123
124
125
126
127
128
129
130
131
        tf.keras.metrics.Mean(name='lm_example_loss')
    ]
    # TODO(hongkuny): rethink how to manage metrics creation with heads.
    if self.task_config.train_data.use_next_sentence_label:
      metrics.append(
          tf.keras.metrics.SparseCategoricalAccuracy(
              name='next_sentence_accuracy'))
      metrics.append(tf.keras.metrics.Mean(name='next_sentence_loss'))
    return metrics

132
  def process_metrics(self, metrics, labels, model_outputs):
Terry Huang's avatar
Terry Huang committed
133
134
135
136
137
138
139
140
141
    with tf.name_scope('MaskedLMTask/process_metrics'):
      metrics = dict([(metric.name, metric) for metric in metrics])
      if 'masked_lm_accuracy' in metrics:
        metrics['masked_lm_accuracy'].update_state(
            labels['masked_lm_ids'], model_outputs['lm_output'],
            labels['masked_lm_weights'])
      if 'next_sentence_accuracy' in metrics:
        metrics['next_sentence_accuracy'].update_state(
            labels['next_sentence_labels'], model_outputs['next_sentence'])
Hongkun Yu's avatar
Hongkun Yu committed
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159

  def train_step(self, inputs, model: tf.keras.Model,
                 optimizer: tf.keras.optimizers.Optimizer, metrics):
    """Does forward and backward.

    Args:
      inputs: a dictionary of input tensors.
      model: the model, forward pass definition.
      optimizer: the optimizer for this training step.
      metrics: a nested structure of metrics objects.

    Returns:
      A dictionary of logs.
    """
    with tf.GradientTape() as tape:
      outputs = model(inputs, training=True)
      # Computes per-replica loss.
      loss = self.build_losses(
160
          labels=inputs,
Hongkun Yu's avatar
Hongkun Yu committed
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
          model_outputs=outputs,
          metrics=metrics,
          aux_losses=model.losses)
      # Scales loss as the default gradients allreduce performs sum inside the
      # optimizer.
      # TODO(b/154564893): enable loss scaling.
      # scaled_loss = loss / tf.distribute.get_strategy().num_replicas_in_sync
    tvars = model.trainable_variables
    grads = tape.gradient(loss, tvars)
    optimizer.apply_gradients(list(zip(grads, tvars)))
    self.process_metrics(metrics, inputs, outputs)
    return {self.loss: loss}

  def validation_step(self, inputs, model: tf.keras.Model, metrics):
    """Validatation step.

    Args:
      inputs: a dictionary of input tensors.
      model: the keras.Model.
      metrics: a nested structure of metrics objects.

    Returns:
      A dictionary of logs.
    """
    outputs = self.inference_step(inputs, model)
    loss = self.build_losses(
187
        labels=inputs,
Hongkun Yu's avatar
Hongkun Yu committed
188
189
190
191
192
        model_outputs=outputs,
        metrics=metrics,
        aux_losses=model.losses)
    self.process_metrics(metrics, inputs, outputs)
    return {self.loss: loss}