trainer.py 8.69 KB
Newer Older
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
1
# Copyright 2022 The TensorFlow Authors. All Rights Reserved.
2
3
4
5
6
7
8
9
10
11
12
13
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
Frederick Liu's avatar
Frederick Liu committed
14

15
16
17
18
"""Run NHNet model training and eval."""

import os

Hongkun Yu's avatar
Hongkun Yu committed
19
# Import libraries
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
20

21
22
23
24
25
from absl import app
from absl import flags
from absl import logging
from six.moves import zip
import tensorflow as tf
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
26

27
from official.common import distribute_utils
Frederick Liu's avatar
Frederick Liu committed
28
from official.legacy.transformer import metrics as transformer_metrics
29
from official.modeling.hyperparams import params_dict
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
30
31
32
33
from official.projects.nhnet import evaluation
from official.projects.nhnet import input_pipeline
from official.projects.nhnet import models
from official.projects.nhnet import optimizer
34
from official.utils.misc import keras_utils
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

FLAGS = flags.FLAGS


def define_flags():
  """Defines command line flags used by NHNet trainer."""
  ## Required parameters
  flags.DEFINE_enum("mode", "train", ["train", "eval", "train_and_eval"],
                    "Execution mode.")
  flags.DEFINE_string("train_file_pattern", "", "Train file pattern.")
  flags.DEFINE_string("eval_file_pattern", "", "Eval file pattern.")
  flags.DEFINE_string(
      "model_dir", None,
      "The output directory where the model checkpoints will be written.")

  # Model training specific flags.
  flags.DEFINE_enum(
      "distribution_strategy", "mirrored", ["tpu", "mirrored"],
      "Distribution Strategy type to use for training. `tpu` uses TPUStrategy "
      "for running on TPUs, `mirrored` uses GPUs with single host.")
  flags.DEFINE_string("tpu", "", "TPU address to connect to.")
  flags.DEFINE_string(
      "init_checkpoint", None,
      "Initial checkpoint (usually from a pre-trained BERT model).")
  flags.DEFINE_integer("train_steps", 100000, "Max train steps")
  flags.DEFINE_integer("eval_steps", 32, "Number of eval steps per run.")
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
61
  flags.DEFINE_integer("eval_timeout", 3000, "Timeout waiting for checkpoints.")
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
  flags.DEFINE_integer("train_batch_size", 32, "Total batch size for training.")
  flags.DEFINE_integer("eval_batch_size", 4, "Total batch size for evaluation.")
  flags.DEFINE_integer(
      "steps_per_loop", 1000,
      "Number of steps per graph-mode loop. Only training step "
      "happens inside the loop.")
  flags.DEFINE_integer("checkpoint_interval", 2000, "Checkpointing interval.")
  flags.DEFINE_integer("len_title", 15, "Title length.")
  flags.DEFINE_integer("len_passage", 200, "Passage length.")
  flags.DEFINE_integer("num_encoder_layers", 12,
                       "Number of hidden layers of encoder.")
  flags.DEFINE_integer("num_decoder_layers", 12,
                       "Number of hidden layers of decoder.")
  flags.DEFINE_string("model_type", "nhnet",
                      "Model type to choose a model configuration.")
  flags.DEFINE_integer(
      "num_nhnet_articles", 5,
      "Maximum number of articles in NHNet, only used when model_type=nhnet")
  flags.DEFINE_string(
      "params_override",
      default=None,
      help=("a YAML/JSON string or a YAML file which specifies additional "
            "overrides over the default parameters"))
85
86
87
  # Enables MLIR-based TF/XLA bridge. This is part of a soft rollout and will
  # eventually be the Google-wide default.
  flags.DEFINE_bool("enable_mlir_bridge", True,
88
                    "Use MLIR TF/XLA bridge (experimental).")
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122


# pylint: disable=protected-access


class Trainer(tf.keras.Model):
  """A training only model."""

  def __init__(self, model, params):
    super(Trainer, self).__init__()
    self.model = model
    self.params = params
    self._num_replicas_in_sync = tf.distribute.get_strategy(
    ).num_replicas_in_sync

  def call(self, inputs, mode="train"):
    return self.model(inputs, mode)

  def train_step(self, inputs):
    """The logic for one training step."""
    with tf.GradientTape() as tape:
      logits, _, _ = self(inputs, mode="train", training=True)
      targets = models.remove_sos_from_seq(inputs["target_ids"],
                                           self.params.pad_token_id)
      loss = transformer_metrics.transformer_loss(logits, targets,
                                                  self.params.label_smoothing,
                                                  self.params.vocab_size)
      # Scales the loss, which results in using the average loss across all
      # of the replicas for backprop.
      scaled_loss = loss / self._num_replicas_in_sync

    tvars = self.trainable_variables
    grads = tape.gradient(scaled_loss, tvars)
    self.optimizer.apply_gradients(list(zip(grads, tvars)))
123
124
125
126
    if isinstance(self.optimizer, tf.keras.optimizers.experimental.Optimizer):
      learning_rate = self.optimizer.learning_rate
    else:
      learning_rate = self.optimizer._decayed_lr(var_dtype=tf.float32)
127
128
    return {
        "training_loss": loss,
129
        "learning_rate": learning_rate,
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
    }


def train(params, strategy, dataset=None):
  """Runs training."""

  if not dataset:
    dataset = input_pipeline.get_input_dataset(
        FLAGS.train_file_pattern,
        FLAGS.train_batch_size,
        params,
        is_training=True,
        strategy=strategy)

  with strategy.scope():
    model = models.create_model(
        FLAGS.model_type, params, init_checkpoint=FLAGS.init_checkpoint)
    opt = optimizer.create_optimizer(params)
    trainer = Trainer(model, params)

    trainer.compile(
        optimizer=opt,
152
        steps_per_execution=FLAGS.steps_per_loop)
153
154
155
    summary_dir = os.path.join(FLAGS.model_dir, "summaries")
    summary_callback = tf.keras.callbacks.TensorBoard(
        summary_dir, update_freq=max(100, FLAGS.steps_per_loop))
156
157
    checkpoint = tf.train.Checkpoint(
        model=model, optimizer=opt, global_step=opt.iterations)
158
159
160
161
    checkpoint_manager = tf.train.CheckpointManager(
        checkpoint,
        directory=FLAGS.model_dir,
        max_to_keep=10,
162
        step_counter=opt.iterations,
163
164
165
166
        checkpoint_interval=FLAGS.checkpoint_interval)
    if checkpoint_manager.restore_or_initialize():
      logging.info("Training restored from the checkpoints in: %s",
                   FLAGS.model_dir)
167
    checkpoint_callback = keras_utils.SimpleCheckpoint(checkpoint_manager)
168
169
170
171

  # Trains the model.
  steps_per_epoch = min(FLAGS.train_steps, FLAGS.checkpoint_interval)
  epochs = FLAGS.train_steps // steps_per_epoch
Hongkun Yu's avatar
Hongkun Yu committed
172
  history = trainer.fit(
173
174
175
176
177
      x=dataset,
      steps_per_epoch=steps_per_epoch,
      epochs=epochs,
      callbacks=[summary_callback, checkpoint_callback],
      verbose=2)
Hongkun Yu's avatar
Hongkun Yu committed
178
179
180
181
  train_hist = history.history
  # Gets final loss from training.
  stats = dict(training_loss=float(train_hist["training_loss"][-1]))
  return stats
182
183
184
185


def run():
  """Runs NHNet using Keras APIs."""
186
187
188
  if FLAGS.enable_mlir_bridge:
    tf.config.experimental.enable_mlir_bridge()

189
  strategy = distribute_utils.get_distribution_strategy(
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
      distribution_strategy=FLAGS.distribution_strategy, tpu_address=FLAGS.tpu)
  if strategy:
    logging.info("***** Number of cores used : %d",
                 strategy.num_replicas_in_sync)

  params = models.get_model_params(FLAGS.model_type)
  params = params_dict.override_params_dict(
      params, FLAGS.params_override, is_strict=True)
  params.override(
      {
          "len_title":
              FLAGS.len_title,
          "len_passage":
              FLAGS.len_passage,
          "num_hidden_layers":
              FLAGS.num_encoder_layers,
          "num_decoder_layers":
              FLAGS.num_decoder_layers,
          "passage_list":
              [chr(ord("b") + i) for i in range(FLAGS.num_nhnet_articles)],
      },
      is_strict=False)
  stats = {}
  if "train" in FLAGS.mode:
Hongkun Yu's avatar
Hongkun Yu committed
214
    stats = train(params, strategy)
215
  if "eval" in FLAGS.mode:
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
216
    timeout = 0 if FLAGS.mode == "train_and_eval" else FLAGS.eval_timeout
217
    # Uses padded decoding for TPU. Always uses cache.
218
    padded_decode = isinstance(strategy, tf.distribute.TPUStrategy)
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
    params.override({
        "padded_decode": padded_decode,
    }, is_strict=False)
    stats = evaluation.continuous_eval(
        strategy,
        params,
        model_type=FLAGS.model_type,
        eval_file_pattern=FLAGS.eval_file_pattern,
        batch_size=FLAGS.eval_batch_size,
        eval_steps=FLAGS.eval_steps,
        model_dir=FLAGS.model_dir,
        timeout=timeout)
  return stats


def main(_):
  stats = run()
  if stats:
    logging.info("Stats:\n%s", stats)

if __name__ == "__main__":
  define_flags()
  app.run(main)