helper.py 6.62 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
# Copyright 2022 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

"""Quantization helpers."""
16
from typing import Any, Dict
17

18
import tensorflow as tf
Fan Yang's avatar
Fan Yang committed
19

20
import tensorflow_model_optimization as tfmot
Fan Yang's avatar
Fan Yang committed
21
from official.projects.qat.vision.quantization import configs
22
23


24
25
26
27
28
29
_QUANTIZATION_WEIGHT_NAMES = [
    'output_max', 'output_min', 'optimizer_step', 'kernel_min', 'kernel_max',
    'add_three_min', 'add_three_max', 'divide_six_min', 'divide_six_max',
    'depthwise_kernel_min', 'depthwise_kernel_max',
    'reduce_mean_quantizer_vars_min', 'reduce_mean_quantizer_vars_max',
    'quantize_layer_min', 'quantize_layer_max',
30
    'quantize_layer_1_min', 'quantize_layer_1_max',
31
    'quantize_layer_2_min', 'quantize_layer_2_max',
32
    'quantize_layer_3_min', 'quantize_layer_3_max',
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
    'post_activation_min', 'post_activation_max',
]

_ORIGINAL_WEIGHT_NAME = [
    'kernel', 'depthwise_kernel', 'gamma', 'beta', 'moving_mean',
    'moving_variance', 'bias'
]


def is_quantization_weight_name(name: str) -> bool:
  simple_name = name.split('/')[-1].split(':')[0]
  if simple_name in _QUANTIZATION_WEIGHT_NAMES:
    return True
  if simple_name in _ORIGINAL_WEIGHT_NAME:
    return False
  raise ValueError('Variable name {} is not supported.'.format(simple_name))


def copy_original_weights(original_model: tf.keras.Model,
                          quantized_model: tf.keras.Model):
  """Helper function that copy the original model weights to quantized model."""
  original_weight_value = original_model.get_weights()
  weight_values = quantized_model.get_weights()

  original_idx = 0
  for idx, weight in enumerate(quantized_model.weights):
    if not is_quantization_weight_name(weight.name):
      if original_idx >= len(original_weight_value):
        raise ValueError('Not enought original model weights.')
      weight_values[idx] = original_weight_value[original_idx]
      original_idx = original_idx + 1

  if original_idx < len(original_weight_value):
    raise ValueError('Not enought quantized model weights.')

  quantized_model.set_weights(weight_values)


71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
class LayerQuantizerHelper(object):
  """Helper class that handles quantizers."""

  def __init__(self, *args, **kwargs):
    self._quantizers = {}
    self._quantizer_vars = {}
    super().__init__(*args, **kwargs)

  def _all_value_quantizer(self):
    return tfmot.quantization.keras.quantizers.AllValuesQuantizer(
        num_bits=8, per_axis=False, symmetric=False, narrow_range=False)

  def _moving_average_quantizer(self):
    return tfmot.quantization.keras.quantizers.MovingAverageQuantizer(
        num_bits=8, per_axis=False, symmetric=False, narrow_range=False)

  def _add_quantizer(self, name, all_value_quantizer=False):
    if all_value_quantizer:
      self._quantizers[name] = self._all_value_quantizer()
    else:
      self._quantizers[name] = self._moving_average_quantizer()

  def _apply_quantizer(self, name, inputs, training, **kwargs):
    return self._quantizers[name](
        inputs, training, self._quantizer_vars[name], **kwargs)

  def _build_quantizer_vars(self):
    for name in self._quantizers:
      self._quantizer_vars[name] = self._quantizers[name].build(
          tensor_shape=None, name=name, layer=self)
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134


class NoOpActivation:
  """No-op activation which simply returns the incoming tensor.

  This activation is required to distinguish between `keras.activations.linear`
  which does the same thing. The main difference is that NoOpActivation should
  not have any quantize operation applied to it.
  """

  def __call__(self, x: tf.Tensor) -> tf.Tensor:
    return x

  def get_config(self) -> Dict[str, Any]:
    """Get a config of this object."""
    return {}

  def __eq__(self, other: Any) -> bool:
    if not other or not isinstance(other, NoOpActivation):
      return False

    return True

  def __ne__(self, other: Any) -> bool:
    return not self.__eq__(other)


def quantize_wrapped_layer(cls, quantize_config):

  def constructor(*arg, **kwargs):
    return tfmot.quantization.keras.QuantizeWrapperV2(
        cls(*arg, **kwargs), quantize_config)

  return constructor
Fan Yang's avatar
Fan Yang committed
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179


def norm_by_activation(activation, norm_quantized, norm_no_quantized):
  if activation not in ['relu', 'relu6']:
    return norm_quantized
  else:
    return norm_no_quantized


Conv2DQuantized = quantize_wrapped_layer(
    tf.keras.layers.Conv2D,
    configs.Default8BitConvQuantizeConfig(['kernel'], ['activation'], False))
Conv2DOutputQuantized = quantize_wrapped_layer(
    tf.keras.layers.Conv2D,
    configs.Default8BitConvQuantizeConfig(['kernel'], ['activation'], True))
DepthwiseConv2DQuantized = quantize_wrapped_layer(
    tf.keras.layers.DepthwiseConv2D,
    configs.Default8BitConvQuantizeConfig(['depthwise_kernel'], ['activation'],
                                          False))
DepthwiseConv2DOutputQuantized = quantize_wrapped_layer(
    tf.keras.layers.DepthwiseConv2D,
    configs.Default8BitConvQuantizeConfig(['depthwise_kernel'], ['activation'],
                                          True))
GlobalAveragePooling2DQuantized = quantize_wrapped_layer(
    tf.keras.layers.GlobalAveragePooling2D,
    configs.Default8BitQuantizeConfig([], [], True))
AveragePooling2DQuantized = quantize_wrapped_layer(
    tf.keras.layers.AveragePooling2D,
    configs.Default8BitQuantizeConfig([], [], True))
ResizingQuantized = quantize_wrapped_layer(
    tf.keras.layers.Resizing, configs.Default8BitQuantizeConfig([], [], True))
ConcatenateQuantized = quantize_wrapped_layer(
    tf.keras.layers.Concatenate, configs.Default8BitQuantizeConfig([], [],
                                                                   True))
UpSampling2DQuantized = quantize_wrapped_layer(
    tf.keras.layers.UpSampling2D, configs.Default8BitQuantizeConfig([], [],
                                                                    True))
ReshapeQuantized = quantize_wrapped_layer(
    tf.keras.layers.Reshape, configs.Default8BitQuantizeConfig([], [], True))

# pylint:disable=g-long-lambda
BatchNormalizationQuantized = lambda norm_layer: quantize_wrapped_layer(
    norm_layer, configs.Default8BitOutputQuantizeConfig())
BatchNormalizationNoQuantized = lambda norm_layer: quantize_wrapped_layer(
    norm_layer, configs.NoOpQuantizeConfig())