common_test.py 3.56 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
# Copyright 2018 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
15
"""Tests for the common module."""
16
17
18
19
20
from __future__ import absolute_import
from __future__ import print_function

from mock import Mock
import numpy as np
21
import tensorflow as tf
22

23
from tensorflow.python.platform import googletest
24
from official.utils.misc import keras_utils
25
from official.vision.image_classification import common
26
27
28


class KerasCommonTests(tf.test.TestCase):
29
  """Tests for common."""
30
31
32
33
34
35
36
37
38

  @classmethod
  def setUpClass(cls):  # pylint: disable=invalid-name
    super(KerasCommonTests, cls).setUpClass()

  def test_build_stats(self):

    history = self._build_history(1.145, cat_accuracy=.99988)
    eval_output = self._build_eval_output(.56432111, 5.990)
39
    th = keras_utils.TimeHistory(128, 100)
40

41
42
43
    th.timestamp_log = [keras_utils.BatchTimestamp(0, 1),
                        keras_utils.BatchTimestamp(1, 2),
                        keras_utils.BatchTimestamp(2, 3)]
44
    th.train_finish_time = 12345
45
    stats = common.build_stats(history, eval_output, [th])
46
47
48
49
50
51
52

    self.assertEqual(1.145, stats['loss'])
    self.assertEqual(.99988, stats['training_accuracy_top_1'])

    self.assertEqual(.56432111, stats['accuracy_top_1'])
    self.assertEqual(5.990, stats['eval_loss'])

53
    self.assertEqual(3, stats['step_timestamp_log'][2].timestamp)
54
55
    self.assertEqual(12345, stats['train_finish_time'])

56
57
58
59
  def test_build_stats_sparse(self):

    history = self._build_history(1.145, cat_accuracy_sparse=.99988)
    eval_output = self._build_eval_output(.928, 1.9844)
60
    stats = common.build_stats(history, eval_output, None)
61
62
63
64
65
66
67

    self.assertEqual(1.145, stats['loss'])
    self.assertEqual(.99988, stats['training_accuracy_top_1'])

    self.assertEqual(.928, stats['accuracy_top_1'])
    self.assertEqual(1.9844, stats['eval_loss'])

68
  def test_time_history(self):
69
    th = keras_utils.TimeHistory(batch_size=128, log_steps=3)
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87

    th.on_train_begin()
    th.on_batch_begin(0)
    th.on_batch_end(0)
    th.on_batch_begin(1)
    th.on_batch_end(1)
    th.on_batch_begin(2)
    th.on_batch_end(2)
    th.on_batch_begin(3)
    th.on_batch_end(3)
    th.on_batch_begin(4)
    th.on_batch_end(4)
    th.on_batch_begin(5)
    th.on_batch_end(5)
    th.on_batch_begin(6)
    th.on_batch_end(6)
    th.on_train_end()

88
    self.assertEqual(3, len(th.timestamp_log))
89

90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
  def _build_history(self, loss, cat_accuracy=None,
                     cat_accuracy_sparse=None):
    history_p = Mock()
    history = {}
    history_p.history = history
    history['loss'] = [np.float64(loss)]
    if cat_accuracy:
      history['categorical_accuracy'] = [np.float64(cat_accuracy)]
    if cat_accuracy_sparse:
      history['sparse_categorical_accuracy'] = [np.float64(cat_accuracy_sparse)]

    return history_p

  def _build_eval_output(self, top_1, eval_loss):
    eval_output = [np.float64(eval_loss), np.float64(top_1)]
    return eval_output
106
107
108
109

if __name__ == '__main__':
  tf.compat.v1.logging.set_verbosity(tf.compat.v1.logging.ERROR)
  googletest.main()