model_builder.py 20.4 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
# Copyright 2017 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================

"""A function to build a DetectionModel from configuration."""
17
import functools
18
19
20
21
22
23
24
25
26
from object_detection.builders import anchor_generator_builder
from object_detection.builders import box_coder_builder
from object_detection.builders import box_predictor_builder
from object_detection.builders import hyperparams_builder
from object_detection.builders import image_resizer_builder
from object_detection.builders import losses_builder
from object_detection.builders import matcher_builder
from object_detection.builders import post_processing_builder
from object_detection.builders import region_similarity_calculator_builder as sim_calc
27
28
from object_detection.core import balanced_positive_negative_sampler as sampler
from object_detection.core import target_assigner
29
30
31
32
from object_detection.meta_architectures import faster_rcnn_meta_arch
from object_detection.meta_architectures import rfcn_meta_arch
from object_detection.meta_architectures import ssd_meta_arch
from object_detection.models import faster_rcnn_inception_resnet_v2_feature_extractor as frcnn_inc_res
33
34
from object_detection.models import faster_rcnn_inception_v2_feature_extractor as frcnn_inc_v2
from object_detection.models import faster_rcnn_nas_feature_extractor as frcnn_nas
35
from object_detection.models import faster_rcnn_pnas_feature_extractor as frcnn_pnas
36
from object_detection.models import faster_rcnn_resnet_v1_feature_extractor as frcnn_resnet_v1
37
from object_detection.models import ssd_resnet_v1_fpn_feature_extractor as ssd_resnet_v1_fpn
38
from object_detection.models import ssd_resnet_v1_ppn_feature_extractor as ssd_resnet_v1_ppn
39
from object_detection.models.embedded_ssd_mobilenet_v1_feature_extractor import EmbeddedSSDMobileNetV1FeatureExtractor
40
from object_detection.models.ssd_inception_v2_feature_extractor import SSDInceptionV2FeatureExtractor
41
from object_detection.models.ssd_inception_v3_feature_extractor import SSDInceptionV3FeatureExtractor
42
from object_detection.models.ssd_mobilenet_v1_feature_extractor import SSDMobileNetV1FeatureExtractor
43
44
from object_detection.models.ssd_mobilenet_v1_fpn_feature_extractor import SSDMobileNetV1FpnFeatureExtractor
from object_detection.models.ssd_mobilenet_v1_ppn_feature_extractor import SSDMobileNetV1PpnFeatureExtractor
45
from object_detection.models.ssd_mobilenet_v2_feature_extractor import SSDMobileNetV2FeatureExtractor
46
from object_detection.predictors import rfcn_box_predictor
47
from object_detection.protos import model_pb2
48
49
from object_detection.utils import ops

50
51
52
53

# A map of names to SSD feature extractors.
SSD_FEATURE_EXTRACTOR_CLASS_MAP = {
    'ssd_inception_v2': SSDInceptionV2FeatureExtractor,
54
    'ssd_inception_v3': SSDInceptionV3FeatureExtractor,
55
    'ssd_mobilenet_v1': SSDMobileNetV1FeatureExtractor,
56
57
    'ssd_mobilenet_v1_fpn': SSDMobileNetV1FpnFeatureExtractor,
    'ssd_mobilenet_v1_ppn': SSDMobileNetV1PpnFeatureExtractor,
58
    'ssd_mobilenet_v2': SSDMobileNetV2FeatureExtractor,
59
60
61
    'ssd_resnet50_v1_fpn': ssd_resnet_v1_fpn.SSDResnet50V1FpnFeatureExtractor,
    'ssd_resnet101_v1_fpn': ssd_resnet_v1_fpn.SSDResnet101V1FpnFeatureExtractor,
    'ssd_resnet152_v1_fpn': ssd_resnet_v1_fpn.SSDResnet152V1FpnFeatureExtractor,
62
63
64
65
66
    'ssd_resnet50_v1_ppn': ssd_resnet_v1_ppn.SSDResnet50V1PpnFeatureExtractor,
    'ssd_resnet101_v1_ppn':
        ssd_resnet_v1_ppn.SSDResnet101V1PpnFeatureExtractor,
    'ssd_resnet152_v1_ppn':
        ssd_resnet_v1_ppn.SSDResnet152V1PpnFeatureExtractor,
67
    'embedded_ssd_mobilenet_v1': EmbeddedSSDMobileNetV1FeatureExtractor,
68
69
70
71
}

# A map of names to Faster R-CNN feature extractors.
FASTER_RCNN_FEATURE_EXTRACTOR_CLASS_MAP = {
Vivek Rathod's avatar
Vivek Rathod committed
72
73
    'faster_rcnn_nas':
    frcnn_nas.FasterRCNNNASFeatureExtractor,
74
75
    'faster_rcnn_pnas':
    frcnn_pnas.FasterRCNNPNASFeatureExtractor,
76
77
78
79
    'faster_rcnn_inception_resnet_v2':
    frcnn_inc_res.FasterRCNNInceptionResnetV2FeatureExtractor,
    'faster_rcnn_inception_v2':
    frcnn_inc_v2.FasterRCNNInceptionV2FeatureExtractor,
80
81
82
83
84
85
86
87
88
    'faster_rcnn_resnet50':
    frcnn_resnet_v1.FasterRCNNResnet50FeatureExtractor,
    'faster_rcnn_resnet101':
    frcnn_resnet_v1.FasterRCNNResnet101FeatureExtractor,
    'faster_rcnn_resnet152':
    frcnn_resnet_v1.FasterRCNNResnet152FeatureExtractor,
}


89
90
def build(model_config, is_training, add_summaries=True,
          add_background_class=True):
91
92
93
94
95
96
  """Builds a DetectionModel based on the model config.

  Args:
    model_config: A model.proto object containing the config for the desired
      DetectionModel.
    is_training: True if this model is being built for training purposes.
97
    add_summaries: Whether to add tensorflow summaries in the model graph.
98
99
100
101
    add_background_class: Whether to add an implicit background class to one-hot
      encodings of groundtruth labels. Set to false if using groundtruth labels
      with an explicit background class or using multiclass scores instead of
      truth in the case of distillation. Ignored in the case of faster_rcnn.
102
103
104
105
106
107
108
109
110
111
  Returns:
    DetectionModel based on the config.

  Raises:
    ValueError: On invalid meta architecture or model.
  """
  if not isinstance(model_config, model_pb2.DetectionModel):
    raise ValueError('model_config not of type model_pb2.DetectionModel.')
  meta_architecture = model_config.WhichOneof('model')
  if meta_architecture == 'ssd':
112
113
    return _build_ssd_model(model_config.ssd, is_training, add_summaries,
                            add_background_class)
114
  if meta_architecture == 'faster_rcnn':
115
116
    return _build_faster_rcnn_model(model_config.faster_rcnn, is_training,
                                    add_summaries)
117
118
119
120
  raise ValueError('Unknown meta architecture: {}'.format(meta_architecture))


def _build_ssd_feature_extractor(feature_extractor_config, is_training,
121
                                 reuse_weights=None):
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
  """Builds a ssd_meta_arch.SSDFeatureExtractor based on config.

  Args:
    feature_extractor_config: A SSDFeatureExtractor proto config from ssd.proto.
    is_training: True if this feature extractor is being built for training.
    reuse_weights: if the feature extractor should reuse weights.

  Returns:
    ssd_meta_arch.SSDFeatureExtractor based on config.

  Raises:
    ValueError: On invalid feature extractor type.
  """
  feature_type = feature_extractor_config.type
  depth_multiplier = feature_extractor_config.depth_multiplier
  min_depth = feature_extractor_config.min_depth
138
  pad_to_multiple = feature_extractor_config.pad_to_multiple
139
  use_explicit_padding = feature_extractor_config.use_explicit_padding
140
  use_depthwise = feature_extractor_config.use_depthwise
141
142
  conv_hyperparams = hyperparams_builder.build(
      feature_extractor_config.conv_hyperparams, is_training)
143
144
  override_base_feature_extractor_hyperparams = (
      feature_extractor_config.override_base_feature_extractor_hyperparams)
145
146
147
148
149

  if feature_type not in SSD_FEATURE_EXTRACTOR_CLASS_MAP:
    raise ValueError('Unknown ssd feature_extractor: {}'.format(feature_type))

  feature_extractor_class = SSD_FEATURE_EXTRACTOR_CLASS_MAP[feature_type]
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
  kwargs = {
      'is_training':
          is_training,
      'depth_multiplier':
          depth_multiplier,
      'min_depth':
          min_depth,
      'pad_to_multiple':
          pad_to_multiple,
      'conv_hyperparams_fn':
          conv_hyperparams,
      'reuse_weights':
          reuse_weights,
      'use_explicit_padding':
          use_explicit_padding,
      'use_depthwise':
          use_depthwise,
      'override_base_feature_extractor_hyperparams':
          override_base_feature_extractor_hyperparams
  }

  if feature_extractor_config.HasField('fpn'):
    kwargs.update({
        'fpn_min_level': feature_extractor_config.fpn.min_level,
        'fpn_max_level': feature_extractor_config.fpn.max_level,
    })

  return feature_extractor_class(**kwargs)
178
179


180
181
def _build_ssd_model(ssd_config, is_training, add_summaries,
                     add_background_class=True):
182
183
184
185
186
187
  """Builds an SSD detection model based on the model config.

  Args:
    ssd_config: A ssd.proto object containing the config for the desired
      SSDMetaArch.
    is_training: True if this model is being built for training purposes.
188
    add_summaries: Whether to add tf summaries in the model.
189
190
191
192
    add_background_class: Whether to add an implicit background class to one-hot
      encodings of groundtruth labels. Set to false if using groundtruth labels
      with an explicit background class or using multiclass scores instead of
      truth in the case of distillation.
193
194
  Returns:
    SSDMetaArch based on the config.
195

196
197
198
199
200
201
202
  Raises:
    ValueError: If ssd_config.type is not recognized (i.e. not registered in
      model_class_map).
  """
  num_classes = ssd_config.num_classes

  # Feature extractor
203
  feature_extractor = _build_ssd_feature_extractor(
204
      feature_extractor_config=ssd_config.feature_extractor,
205
      is_training=is_training)
206
207
208
209
210

  box_coder = box_coder_builder.build(ssd_config.box_coder)
  matcher = matcher_builder.build(ssd_config.matcher)
  region_similarity_calculator = sim_calc.build(
      ssd_config.similarity_calculator)
211
  encode_background_as_zeros = ssd_config.encode_background_as_zeros
212
  negative_class_weight = ssd_config.negative_class_weight
213
214
215
216
217
218
219
220
221
  ssd_box_predictor = box_predictor_builder.build(hyperparams_builder.build,
                                                  ssd_config.box_predictor,
                                                  is_training, num_classes)
  anchor_generator = anchor_generator_builder.build(
      ssd_config.anchor_generator)
  image_resizer_fn = image_resizer_builder.build(ssd_config.image_resizer)
  non_max_suppression_fn, score_conversion_fn = post_processing_builder.build(
      ssd_config.post_processing)
  (classification_loss, localization_loss, classification_weight,
222
223
   localization_weight, hard_example_miner,
   random_example_sampler) = losses_builder.build(ssd_config.loss)
224
  normalize_loss_by_num_matches = ssd_config.normalize_loss_by_num_matches
225
  normalize_loc_loss_by_codesize = ssd_config.normalize_loc_loss_by_codesize
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
  weight_regression_loss_by_score = (ssd_config.weight_regression_loss_by_score)

  target_assigner_instance = target_assigner.TargetAssigner(
      region_similarity_calculator,
      matcher,
      box_coder,
      negative_class_weight=negative_class_weight,
      weight_regression_loss_by_score=weight_regression_loss_by_score)

  expected_classification_loss_under_sampling = None
  if ssd_config.use_expected_classification_loss_under_sampling:
    expected_classification_loss_under_sampling = functools.partial(
        ops.expected_classification_loss_under_sampling,
        minimum_negative_sampling=ssd_config.minimum_negative_sampling,
        desired_negative_sampling_ratio=ssd_config.
        desired_negative_sampling_ratio)
242
243
244
245
246
247
248
249
250

  return ssd_meta_arch.SSDMetaArch(
      is_training,
      anchor_generator,
      ssd_box_predictor,
      box_coder,
      feature_extractor,
      matcher,
      region_similarity_calculator,
251
      encode_background_as_zeros,
252
      negative_class_weight,
253
254
255
256
257
258
259
260
      image_resizer_fn,
      non_max_suppression_fn,
      score_conversion_fn,
      classification_loss,
      localization_loss,
      classification_weight,
      localization_weight,
      normalize_loss_by_num_matches,
261
      hard_example_miner,
262
      target_assigner_instance=target_assigner_instance,
263
      add_summaries=add_summaries,
264
265
      normalize_loc_loss_by_codesize=normalize_loc_loss_by_codesize,
      freeze_batchnorm=ssd_config.freeze_batchnorm,
266
      inplace_batchnorm_update=ssd_config.inplace_batchnorm_update,
267
      add_background_class=add_background_class,
268
269
270
      random_example_sampler=random_example_sampler,
      expected_classification_loss_under_sampling=
      expected_classification_loss_under_sampling)
271
272
273


def _build_faster_rcnn_feature_extractor(
274
275
    feature_extractor_config, is_training, reuse_weights=None,
    inplace_batchnorm_update=False):
276
277
278
279
280
281
282
  """Builds a faster_rcnn_meta_arch.FasterRCNNFeatureExtractor based on config.

  Args:
    feature_extractor_config: A FasterRcnnFeatureExtractor proto config from
      faster_rcnn.proto.
    is_training: True if this feature extractor is being built for training.
    reuse_weights: if the feature extractor should reuse weights.
283
284
285
286
287
    inplace_batchnorm_update: Whether to update batch_norm inplace during
      training. This is required for batch norm to work correctly on TPUs. When
      this is false, user must add a control dependency on
      tf.GraphKeys.UPDATE_OPS for train/loss op in order to update the batch
      norm moving average parameters.
288
289
290
291
292
293
294

  Returns:
    faster_rcnn_meta_arch.FasterRCNNFeatureExtractor based on config.

  Raises:
    ValueError: On invalid feature extractor type.
  """
295
296
  if inplace_batchnorm_update:
    raise ValueError('inplace batchnorm updates not supported.')
297
298
299
  feature_type = feature_extractor_config.type
  first_stage_features_stride = (
      feature_extractor_config.first_stage_features_stride)
300
  batch_norm_trainable = feature_extractor_config.batch_norm_trainable
301
302
303
304
305
306
307

  if feature_type not in FASTER_RCNN_FEATURE_EXTRACTOR_CLASS_MAP:
    raise ValueError('Unknown Faster R-CNN feature_extractor: {}'.format(
        feature_type))
  feature_extractor_class = FASTER_RCNN_FEATURE_EXTRACTOR_CLASS_MAP[
      feature_type]
  return feature_extractor_class(
308
309
      is_training, first_stage_features_stride,
      batch_norm_trainable, reuse_weights)
310
311


312
def _build_faster_rcnn_model(frcnn_config, is_training, add_summaries):
313
314
315
316
317
318
319
  """Builds a Faster R-CNN or R-FCN detection model based on the model config.

  Builds R-FCN model if the second_stage_box_predictor in the config is of type
  `rfcn_box_predictor` else builds a Faster R-CNN model.

  Args:
    frcnn_config: A faster_rcnn.proto object containing the config for the
320
      desired FasterRCNNMetaArch or RFCNMetaArch.
321
    is_training: True if this model is being built for training purposes.
322
    add_summaries: Whether to add tf summaries in the model.
323
324
325

  Returns:
    FasterRCNNMetaArch based on the config.
326

327
328
329
330
331
332
333
334
  Raises:
    ValueError: If frcnn_config.type is not recognized (i.e. not registered in
      model_class_map).
  """
  num_classes = frcnn_config.num_classes
  image_resizer_fn = image_resizer_builder.build(frcnn_config.image_resizer)

  feature_extractor = _build_faster_rcnn_feature_extractor(
335
336
      frcnn_config.feature_extractor, is_training,
      frcnn_config.inplace_batchnorm_update)
337

338
  number_of_stages = frcnn_config.number_of_stages
339
340
341
  first_stage_anchor_generator = anchor_generator_builder.build(
      frcnn_config.first_stage_anchor_generator)

342
343
344
345
  first_stage_target_assigner = target_assigner.create_target_assigner(
      'FasterRCNN',
      'proposal',
      use_matmul_gather=frcnn_config.use_matmul_gather_in_matcher)
346
  first_stage_atrous_rate = frcnn_config.first_stage_atrous_rate
347
  first_stage_box_predictor_arg_scope_fn = hyperparams_builder.build(
348
349
350
351
352
      frcnn_config.first_stage_box_predictor_conv_hyperparams, is_training)
  first_stage_box_predictor_kernel_size = (
      frcnn_config.first_stage_box_predictor_kernel_size)
  first_stage_box_predictor_depth = frcnn_config.first_stage_box_predictor_depth
  first_stage_minibatch_size = frcnn_config.first_stage_minibatch_size
353
354
355
  first_stage_sampler = sampler.BalancedPositiveNegativeSampler(
      positive_fraction=frcnn_config.first_stage_positive_balance_fraction,
      is_static=frcnn_config.use_static_balanced_label_sampler)
356
357
358
359
360
361
362
363
364
365
366
  first_stage_nms_score_threshold = frcnn_config.first_stage_nms_score_threshold
  first_stage_nms_iou_threshold = frcnn_config.first_stage_nms_iou_threshold
  first_stage_max_proposals = frcnn_config.first_stage_max_proposals
  first_stage_loc_loss_weight = (
      frcnn_config.first_stage_localization_loss_weight)
  first_stage_obj_loss_weight = frcnn_config.first_stage_objectness_loss_weight

  initial_crop_size = frcnn_config.initial_crop_size
  maxpool_kernel_size = frcnn_config.maxpool_kernel_size
  maxpool_stride = frcnn_config.maxpool_stride

367
368
369
370
  second_stage_target_assigner = target_assigner.create_target_assigner(
      'FasterRCNN',
      'detection',
      use_matmul_gather=frcnn_config.use_matmul_gather_in_matcher)
371
372
373
374
375
376
  second_stage_box_predictor = box_predictor_builder.build(
      hyperparams_builder.build,
      frcnn_config.second_stage_box_predictor,
      is_training=is_training,
      num_classes=num_classes)
  second_stage_batch_size = frcnn_config.second_stage_batch_size
377
378
379
  second_stage_sampler = sampler.BalancedPositiveNegativeSampler(
      positive_fraction=frcnn_config.second_stage_balance_fraction,
      is_static=frcnn_config.use_static_balanced_label_sampler)
380
381
382
383
  (second_stage_non_max_suppression_fn, second_stage_score_conversion_fn
  ) = post_processing_builder.build(frcnn_config.second_stage_post_processing)
  second_stage_localization_loss_weight = (
      frcnn_config.second_stage_localization_loss_weight)
384
385
386
  second_stage_classification_loss = (
      losses_builder.build_faster_rcnn_classification_loss(
          frcnn_config.second_stage_classification_loss))
387
388
  second_stage_classification_loss_weight = (
      frcnn_config.second_stage_classification_loss_weight)
389
390
  second_stage_mask_prediction_loss_weight = (
      frcnn_config.second_stage_mask_prediction_loss_weight)
391
392
393
394
395
396
397
398

  hard_example_miner = None
  if frcnn_config.HasField('hard_example_miner'):
    hard_example_miner = losses_builder.build_hard_example_miner(
        frcnn_config.hard_example_miner,
        second_stage_classification_loss_weight,
        second_stage_localization_loss_weight)

399
  use_matmul_crop_and_resize = (frcnn_config.use_matmul_crop_and_resize)
400
401
  clip_anchors_to_image = (
      frcnn_config.clip_anchors_to_image)
402

403
404
405
406
407
  common_kwargs = {
      'is_training': is_training,
      'num_classes': num_classes,
      'image_resizer_fn': image_resizer_fn,
      'feature_extractor': feature_extractor,
408
      'number_of_stages': number_of_stages,
409
      'first_stage_anchor_generator': first_stage_anchor_generator,
410
      'first_stage_target_assigner': first_stage_target_assigner,
411
      'first_stage_atrous_rate': first_stage_atrous_rate,
412
413
      'first_stage_box_predictor_arg_scope_fn':
      first_stage_box_predictor_arg_scope_fn,
414
415
416
417
      'first_stage_box_predictor_kernel_size':
      first_stage_box_predictor_kernel_size,
      'first_stage_box_predictor_depth': first_stage_box_predictor_depth,
      'first_stage_minibatch_size': first_stage_minibatch_size,
418
      'first_stage_sampler': first_stage_sampler,
419
420
421
422
423
      'first_stage_nms_score_threshold': first_stage_nms_score_threshold,
      'first_stage_nms_iou_threshold': first_stage_nms_iou_threshold,
      'first_stage_max_proposals': first_stage_max_proposals,
      'first_stage_localization_loss_weight': first_stage_loc_loss_weight,
      'first_stage_objectness_loss_weight': first_stage_obj_loss_weight,
424
      'second_stage_target_assigner': second_stage_target_assigner,
425
      'second_stage_batch_size': second_stage_batch_size,
426
      'second_stage_sampler': second_stage_sampler,
427
428
429
430
431
      'second_stage_non_max_suppression_fn':
      second_stage_non_max_suppression_fn,
      'second_stage_score_conversion_fn': second_stage_score_conversion_fn,
      'second_stage_localization_loss_weight':
      second_stage_localization_loss_weight,
432
433
      'second_stage_classification_loss':
      second_stage_classification_loss,
434
435
      'second_stage_classification_loss_weight':
      second_stage_classification_loss_weight,
436
      'hard_example_miner': hard_example_miner,
437
      'add_summaries': add_summaries,
438
439
      'use_matmul_crop_and_resize': use_matmul_crop_and_resize,
      'clip_anchors_to_image': clip_anchors_to_image
440
  }
441

442
443
  if isinstance(second_stage_box_predictor,
                rfcn_box_predictor.RfcnBoxPredictor):
444
445
446
447
448
449
450
451
452
    return rfcn_meta_arch.RFCNMetaArch(
        second_stage_rfcn_box_predictor=second_stage_box_predictor,
        **common_kwargs)
  else:
    return faster_rcnn_meta_arch.FasterRCNNMetaArch(
        initial_crop_size=initial_crop_size,
        maxpool_kernel_size=maxpool_kernel_size,
        maxpool_stride=maxpool_stride,
        second_stage_mask_rcnn_box_predictor=second_stage_box_predictor,
453
454
        second_stage_mask_prediction_loss_weight=(
            second_stage_mask_prediction_loss_weight),
455
        **common_kwargs)