transformer.py 16.7 KB
Newer Older
Hongkun Yu's avatar
Hongkun Yu committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
# Copyright 2019 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Keras-based transformer block layer."""
16
# pylint: disable=g-classes-have-attributes
Hongkun Yu's avatar
Hongkun Yu committed
17
18
19
20
21
from __future__ import absolute_import
from __future__ import division
# from __future__ import google_type_annotations
from __future__ import print_function

Chen Chen's avatar
Chen Chen committed
22
import gin
Hongkun Yu's avatar
Hongkun Yu committed
23
24
25
26
import tensorflow as tf

from official.nlp.modeling.layers import attention
from official.nlp.modeling.layers import dense_einsum
27
from official.nlp.modeling.layers import multi_channel_attention
28
from official.nlp.modeling.layers.util import tf_function_if_eager
Hongkun Yu's avatar
Hongkun Yu committed
29
30
31
32
33
34
35
36
37


@tf.keras.utils.register_keras_serializable(package="Text")
class Transformer(tf.keras.layers.Layer):
  """Transformer layer.

  This layer implements the Transformer from "Attention Is All You Need".
  (https://arxiv.org/abs/1706.03762).

38
  Arguments:
Hongkun Yu's avatar
Hongkun Yu committed
39
40
41
42
43
    num_attention_heads: Number of attention heads.
    intermediate_size: Size of the intermediate layer.
    intermediate_activation: Activation for the intermediate layer.
    dropout_rate: Dropout probability for the post-attention and output dropout.
    attention_dropout_rate: Dropout probability for within the attention layer.
44
45
    output_range: the sequence output range, [0, output_range) by slicing the
      target sequence. `None` means the target sequence is not sliced.
Hongkun Yu's avatar
Hongkun Yu committed
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
    kernel_initializer: Initializer for dense layer kernels.
    bias_initializer: Initializer for dense layer biases.
    kernel_regularizer: Regularizer for dense layer kernels.
    bias_regularizer: Regularizer for dense layer biases.
    activity_regularizer: Regularizer for dense layer activity.
    kernel_constraint: Constraint for dense layer kernels.
    bias_constraint: Constraint for dense layer kernels.
  """

  def __init__(self,
               num_attention_heads,
               intermediate_size,
               intermediate_activation,
               dropout_rate=0.0,
               attention_dropout_rate=0.0,
61
               output_range=None,
Hongkun Yu's avatar
Hongkun Yu committed
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
               kernel_initializer="glorot_uniform",
               bias_initializer="zeros",
               kernel_regularizer=None,
               bias_regularizer=None,
               activity_regularizer=None,
               kernel_constraint=None,
               bias_constraint=None,
               **kwargs):
    super(Transformer, self).__init__(**kwargs)

    self._num_heads = num_attention_heads
    self._intermediate_size = intermediate_size
    self._intermediate_activation = intermediate_activation
    self._attention_dropout_rate = attention_dropout_rate
    self._dropout_rate = dropout_rate
77
    self._output_range = output_range
Hongkun Yu's avatar
Hongkun Yu committed
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
    self._kernel_initializer = tf.keras.initializers.get(kernel_initializer)
    self._bias_initializer = tf.keras.initializers.get(bias_initializer)
    self._kernel_regularizer = tf.keras.regularizers.get(kernel_regularizer)
    self._bias_regularizer = tf.keras.regularizers.get(bias_regularizer)
    self._kernel_constraint = tf.keras.constraints.get(kernel_constraint)
    self._bias_constraint = tf.keras.constraints.get(bias_constraint)

  def build(self, input_shape):
    input_tensor = input_shape[0] if len(input_shape) == 2 else input_shape
    input_tensor_shape = tf.TensorShape(input_tensor)
    if len(input_tensor_shape) != 3:
      raise ValueError("TransformerLayer expects a three-dimensional input of "
                       "shape [batch, sequence, width].")
    batch_size, sequence_length, hidden_size = input_tensor_shape

    if len(input_shape) == 2:
      mask_tensor_shape = tf.TensorShape(input_shape[1])
      expected_mask_tensor_shape = tf.TensorShape(
          [batch_size, sequence_length, sequence_length])
      if not expected_mask_tensor_shape.is_compatible_with(mask_tensor_shape):
        raise ValueError("When passing a mask tensor to TransformerLayer, the "
                         "mask tensor must be of shape [batch, "
                         "sequence_length, sequence_length] (here %s). Got a "
                         "mask tensor of shape %s." %
                         (expected_mask_tensor_shape, mask_tensor_shape))
    if hidden_size % self._num_heads != 0:
      raise ValueError(
          "The input size (%d) is not a multiple of the number of attention "
          "heads (%d)" % (hidden_size, self._num_heads))
    self._attention_head_size = int(hidden_size // self._num_heads)

109
    self._attention_layer = attention.MultiHeadAttention(
Hongkun Yu's avatar
Hongkun Yu committed
110
        num_heads=self._num_heads,
Hongkun Yu's avatar
Hongkun Yu committed
111
        key_size=self._attention_head_size,
112
        dropout=self._attention_dropout_rate,
Hongkun Yu's avatar
Hongkun Yu committed
113
114
115
116
117
118
119
120
        kernel_initializer=self._kernel_initializer,
        bias_initializer=self._bias_initializer,
        kernel_regularizer=self._kernel_regularizer,
        bias_regularizer=self._bias_regularizer,
        activity_regularizer=self._activity_regularizer,
        kernel_constraint=self._kernel_constraint,
        bias_constraint=self._bias_constraint,
        name="self_attention")
121
122
123
124
    # pylint: disable=protected-access
    self._attention_layer.build([input_tensor_shape] * 3)
    self._attention_output_dense = self._attention_layer._output_dense
    # pylint: enable=protected-access
Hongkun Yu's avatar
Hongkun Yu committed
125
    self._attention_dropout = tf.keras.layers.Dropout(rate=self._dropout_rate)
Zongwei Zhou's avatar
Zongwei Zhou committed
126
127
    # Use float32 in layernorm for numeric stability.
    # It is probably safe in mixed_float16, but we haven't validated this yet.
Hongkun Yu's avatar
Hongkun Yu committed
128
129
    self._attention_layer_norm = (
        tf.keras.layers.LayerNormalization(
Chen Chen's avatar
Chen Chen committed
130
131
132
            name="self_attention_layer_norm",
            axis=-1,
            epsilon=1e-12,
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
133
            dtype=tf.float32))
Hongkun Yu's avatar
Hongkun Yu committed
134
135
    self._intermediate_dense = dense_einsum.DenseEinsum(
        output_shape=self._intermediate_size,
Chen Chen's avatar
Chen Chen committed
136
        activation=None,
Hongkun Yu's avatar
Hongkun Yu committed
137
138
139
140
141
142
143
144
        kernel_initializer=self._kernel_initializer,
        bias_initializer=self._bias_initializer,
        kernel_regularizer=self._kernel_regularizer,
        bias_regularizer=self._bias_regularizer,
        activity_regularizer=self._activity_regularizer,
        kernel_constraint=self._kernel_constraint,
        bias_constraint=self._bias_constraint,
        name="intermediate")
145
146
147
148
149
150
    policy = tf.keras.mixed_precision.experimental.global_policy()
    if policy.name == "mixed_bfloat16":
      # bfloat16 causes BERT with the LAMB optimizer to not converge
      # as well, so we use float32.
      # TODO(b/154538392): Investigate this.
      policy = tf.float32
Chen Chen's avatar
Chen Chen committed
151
    self._intermediate_activation_layer = tf.keras.layers.Activation(
152
        self._intermediate_activation, dtype=policy)
Hongkun Yu's avatar
Hongkun Yu committed
153
154
155
156
157
158
159
160
161
162
163
    self._output_dense = dense_einsum.DenseEinsum(
        output_shape=hidden_size,
        kernel_initializer=self._kernel_initializer,
        bias_initializer=self._bias_initializer,
        kernel_regularizer=self._kernel_regularizer,
        bias_regularizer=self._bias_regularizer,
        activity_regularizer=self._activity_regularizer,
        kernel_constraint=self._kernel_constraint,
        bias_constraint=self._bias_constraint,
        name="output")
    self._output_dropout = tf.keras.layers.Dropout(rate=self._dropout_rate)
Zongwei Zhou's avatar
Zongwei Zhou committed
164
    # Use float32 in layernorm for numeric stability.
Hongkun Yu's avatar
Hongkun Yu committed
165
    self._output_layer_norm = tf.keras.layers.LayerNormalization(
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
166
        name="output_layer_norm", axis=-1, epsilon=1e-12, dtype=tf.float32)
Hongkun Yu's avatar
Hongkun Yu committed
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181

    super(Transformer, self).build(input_shape)

  def get_config(self):
    config = {
        "num_attention_heads":
            self._num_heads,
        "intermediate_size":
            self._intermediate_size,
        "intermediate_activation":
            self._intermediate_activation,
        "dropout_rate":
            self._dropout_rate,
        "attention_dropout_rate":
            self._attention_dropout_rate,
182
183
        "output_range":
            self._output_range,
Hongkun Yu's avatar
Hongkun Yu committed
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
        "kernel_initializer":
            tf.keras.initializers.serialize(self._kernel_initializer),
        "bias_initializer":
            tf.keras.initializers.serialize(self._bias_initializer),
        "kernel_regularizer":
            tf.keras.regularizers.serialize(self._kernel_regularizer),
        "bias_regularizer":
            tf.keras.regularizers.serialize(self._bias_regularizer),
        "activity_regularizer":
            tf.keras.regularizers.serialize(self._activity_regularizer),
        "kernel_constraint":
            tf.keras.constraints.serialize(self._kernel_constraint),
        "bias_constraint":
            tf.keras.constraints.serialize(self._bias_constraint)
    }
    base_config = super(Transformer, self).get_config()
    return dict(list(base_config.items()) + list(config.items()))

  def call(self, inputs):
    if isinstance(inputs, (list, tuple)) and len(inputs) == 2:
      input_tensor, attention_mask = inputs
    else:
      input_tensor, attention_mask = (inputs, None)

208
209
210
211
212
213
    if self._output_range:
      target_tensor = input_tensor[:, 0:self._output_range, :]
      attention_mask = attention_mask[:, 0:self._output_range, :]
    else:
      target_tensor = input_tensor
    attention_inputs = [target_tensor, input_tensor]
Hongkun Yu's avatar
Hongkun Yu committed
214

Hongkun Yu's avatar
Hongkun Yu committed
215
    attention_output = self._attention_layer(attention_inputs, attention_mask)
216
    attention_output = self._attention_dropout(attention_output)
217
    attention_output = self._attention_layer_norm(target_tensor +
218
219
220
221
222
223
224
225
226
227
228
229
230
                                                  attention_output)
    intermediate_output = self._intermediate_dense(attention_output)
    intermediate_output = self._intermediate_activation_layer(
        intermediate_output)
    layer_output = self._output_dense(intermediate_output)
    layer_output = self._output_dropout(layer_output)
    # During mixed precision training, attention_output is from layer norm and
    # is always fp32 for now. Cast layer_output to fp32 for the subsequent
    # add.
    layer_output = tf.cast(layer_output, tf.float32)
    layer_output = self._output_layer_norm(layer_output + attention_output)

    return layer_output
231
232


Chen Chen's avatar
Chen Chen committed
233
234
@tf.keras.utils.register_keras_serializable(package="Text")
@gin.configurable
235
236
237
238
239
class CompiledTransformer(Transformer):

  @tf_function_if_eager(experimental_compile=True)
  def call(self, inputs):
    return super(CompiledTransformer, self).call(inputs)
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381


@tf.keras.utils.register_keras_serializable(package="Text")
class TransformerDecoderLayer(tf.keras.layers.Layer):
  """Single transformer layer for decoder.

  It has three sub-layers:
  (1) a multi-head self-attention mechanism.
  (2) a encoder-decoder attention.
  (3) a positionwise fully connected feed-forward network.
  """

  def __init__(self,
               hidden_size=768,
               num_attention_heads=12,
               intermediate_size=3072,
               intermediate_activation="relu",
               hidden_dropout_prob=0.0,
               attention_probs_dropout_prob=0.0,
               initializer_range=0.02,
               multi_channel_cross_attention=False,
               **kwargs):
    super(TransformerDecoderLayer, self).__init__(**kwargs)
    self.hidden_size = hidden_size
    self.num_attention_heads = num_attention_heads
    self.intermediate_size = intermediate_size
    self.intermediate_activation = tf.keras.activations.get(
        intermediate_activation)
    self.hidden_dropout_prob = hidden_dropout_prob
    self.attention_probs_dropout_prob = attention_probs_dropout_prob
    self.multi_channel_cross_attention = multi_channel_cross_attention
    self._kernel_initializer = tf.keras.initializers.TruncatedNormal(
        stddev=initializer_range)
    self._bias_initializer = tf.keras.initializers.get("zeros")
    if self.multi_channel_cross_attention:
      self._cross_attention_cls = multi_channel_attention.MultiChannelAttention
    else:
      self._cross_attention_cls = attention.MultiHeadAttention

    if self.hidden_size % self.num_attention_heads != 0:
      raise ValueError(
          "The hidden size (%d) is not a multiple of the number of attention "
          "heads (%d)" % (self.hidden_size, self.num_attention_heads))
    self.attention_head_size = int(self.hidden_size / self.num_attention_heads)

  def build(self, input_shape):
    # Self attention.
    self.self_attention = attention.CachedAttention(
        num_heads=self.num_attention_heads,
        key_size=self.attention_head_size,
        dropout=self.attention_probs_dropout_prob,
        kernel_initializer=self._kernel_initializer,
        name="self_attention")
    self.self_attention_output_dense = dense_einsum.DenseEinsum(
        output_shape=self.hidden_size,
        num_summed_dimensions=2,
        kernel_initializer=self._kernel_initializer,
        bias_initializer=self._bias_initializer,
        name="self_attention_output")
    self.self_attention_dropout = tf.keras.layers.Dropout(
        rate=self.hidden_dropout_prob)
    self.self_attention_layer_norm = (
        tf.keras.layers.LayerNormalization(
            name="self_attention_layer_norm", axis=-1, epsilon=1e-12))
    # Encoder-decoder attention.
    self.encdec_attention = self._cross_attention_cls(
        num_heads=self.num_attention_heads,
        key_size=self.attention_head_size,
        dropout=self.attention_probs_dropout_prob,
        output_shape=self.hidden_size,
        kernel_initializer=self._kernel_initializer,
        name="attention/encdec")

    self.encdec_attention_dropout = tf.keras.layers.Dropout(
        rate=self.hidden_dropout_prob)
    self.encdec_attention_layer_norm = (
        tf.keras.layers.LayerNormalization(
            name="attention/encdec_output_layer_norm", axis=-1, epsilon=1e-12))

    # Feed-forward projection.
    self.intermediate_dense = dense_einsum.DenseEinsum(
        output_shape=self.intermediate_size,
        activation=None,
        kernel_initializer=self._kernel_initializer,
        bias_initializer=self._bias_initializer,
        name="intermediate")
    self.intermediate_activation_layer = tf.keras.layers.Activation(
        self.intermediate_activation)
    self.output_dense = dense_einsum.DenseEinsum(
        output_shape=self.hidden_size,
        kernel_initializer=self._kernel_initializer,
        bias_initializer=self._bias_initializer,
        name="output")
    self.output_dropout = tf.keras.layers.Dropout(rate=self.hidden_dropout_prob)
    self.output_layer_norm = tf.keras.layers.LayerNormalization(
        name="output_layer_norm", axis=-1, epsilon=1e-12)
    super(TransformerDecoderLayer, self).build(input_shape)

  def common_layers_with_encoder(self):
    """Gets layer objects that can make a Transformer encoder block."""
    return [
        self.self_attention, self.self_attention_layer_norm,
        self.intermediate_dense, self.output_dense, self.output_layer_norm
    ]

  def call(self, inputs, cache=None, decode_loop_step=None):
    if self.multi_channel_cross_attention:
      if len(inputs) != 5:
        raise ValueError(
            "TransformerDecoderLayer must have 5 inputs, when it uses "
            "multi_channel_cross_attention. But it got: %d" % len(inputs))
    elif len(inputs) != 4:
      raise ValueError(
          "TransformerDecoderLayer must have 4 inputs, but it got: %d" %
          len(inputs))
    input_tensor, memory, attention_mask, self_attention_mask = inputs[:4]
    self_attention_inputs = [input_tensor, input_tensor]
    self_attention_output, cache = self.self_attention(
        self_attention_inputs,
        attention_mask=self_attention_mask,
        cache=cache,
        decode_loop_step=decode_loop_step)
    self_attention_output = self.self_attention_dropout(self_attention_output)
    self_attention_output = self.self_attention_layer_norm(
        input_tensor + self_attention_output)

    cross_attn_inputs = [self_attention_output, memory]
    if self.multi_channel_cross_attention:
      # Accesses the 5-th input tensor for the doc-attention probabilities.
      cross_attn_inputs.append(inputs[-1])
    attention_output = self.encdec_attention(cross_attn_inputs, attention_mask)
    attention_output = self.encdec_attention_dropout(attention_output)
    attention_output = self.encdec_attention_layer_norm(self_attention_output +
                                                        attention_output)

    intermediate_output = self.intermediate_dense(attention_output)
    intermediate_output = self.intermediate_activation_layer(
        intermediate_output)
    layer_output = self.output_dense(intermediate_output)
    layer_output = self.output_dropout(layer_output)
    layer_output = self.output_layer_norm(layer_output + attention_output)
    return layer_output, cache