reader.py 4.18 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
# Copyright 2015 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================


"""Utilities for parsing PTB text files."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import collections
import os
24
import sys
25
26
27

import tensorflow as tf

28
Py3 = sys.version_info[0] == 3
29
30
31

def _read_words(filename):
  with tf.gfile.GFile(filename, "r") as f:
32
33
34
35
    if Py3:
      return f.read().replace("\n", "<eos>").split()
    else:
      return f.read().decode("utf-8").replace("\n", "<eos>").split()
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54


def _build_vocab(filename):
  data = _read_words(filename)

  counter = collections.Counter(data)
  count_pairs = sorted(counter.items(), key=lambda x: (-x[1], x[0]))

  words, _ = list(zip(*count_pairs))
  word_to_id = dict(zip(words, range(len(words))))

  return word_to_id


def _file_to_word_ids(filename, word_to_id):
  data = _read_words(filename)
  return [word_to_id[word] for word in data if word in word_to_id]


55
def ptb_raw_data(data_path):
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
  """Load PTB raw data from data directory "data_path".

  Reads PTB text files, converts strings to integer ids,
  and performs mini-batching of the inputs.

  The PTB dataset comes from Tomas Mikolov's webpage:

  http://www.fit.vutbr.cz/~imikolov/rnnlm/simple-examples.tgz

  Args:
    data_path: string path to the directory where simple-examples.tgz has
      been extracted.

  Returns:
    tuple (train_data, valid_data, test_data, vocabulary)
    where each of the data objects can be passed to PTBIterator.
  """

  train_path = os.path.join(data_path, "ptb.train.txt")
  valid_path = os.path.join(data_path, "ptb.valid.txt")
  test_path = os.path.join(data_path, "ptb.test.txt")

  word_to_id = _build_vocab(train_path)
  train_data = _file_to_word_ids(train_path, word_to_id)
  valid_data = _file_to_word_ids(valid_path, word_to_id)
  test_data = _file_to_word_ids(test_path, word_to_id)
  vocabulary = len(word_to_id)
  return train_data, valid_data, test_data, vocabulary


def ptb_producer(raw_data, batch_size, num_steps, name=None):
  """Iterate on the raw PTB data.

  This chunks up raw_data into batches of examples and returns Tensors that
  are drawn from these batches.

  Args:
    raw_data: one of the raw data outputs from ptb_raw_data.
    batch_size: int, the batch size.
    num_steps: int, the number of unrolls.
    name: the name of this operation (optional).

  Returns:
    A pair of Tensors, each shaped [batch_size, num_steps]. The second element
    of the tuple is the same data time-shifted to the right by one.

  Raises:
    tf.errors.InvalidArgumentError: if batch_size or num_steps are too high.
  """
  with tf.name_scope(name, "PTBProducer", [raw_data, batch_size, num_steps]):
    raw_data = tf.convert_to_tensor(raw_data, name="raw_data", dtype=tf.int32)

    data_len = tf.size(raw_data)
    batch_len = data_len // batch_size
    data = tf.reshape(raw_data[0 : batch_size * batch_len],
                      [batch_size, batch_len])

    epoch_size = (batch_len - 1) // num_steps
    assertion = tf.assert_positive(
        epoch_size,
        message="epoch_size == 0, decrease batch_size or num_steps")
    with tf.control_dependencies([assertion]):
      epoch_size = tf.identity(epoch_size, name="epoch_size")

    i = tf.train.range_input_producer(epoch_size, shuffle=False).dequeue()
    x = tf.strided_slice(data, [0, i * num_steps],
                         [batch_size, (i + 1) * num_steps])
    x.set_shape([batch_size, num_steps])
    y = tf.strided_slice(data, [0, i * num_steps + 1],
                         [batch_size, (i + 1) * num_steps + 1])
    y.set_shape([batch_size, num_steps])
    return x, y