movinet_layers.py 59.9 KB
Newer Older
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
1
# Copyright 2022 The TensorFlow Authors. All Rights Reserved.
Dan Kondratyuk's avatar
Dan Kondratyuk committed
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

"""Contains common building blocks for MoViNets.

Reference: https://arxiv.org/pdf/2103.11511.pdf
"""

20
from typing import Any, Mapping, Optional, Sequence, Tuple, Union
Dan Kondratyuk's avatar
Dan Kondratyuk committed
21
22
23

import tensorflow as tf

Hao Wu's avatar
Hao Wu committed
24
from official.modeling import tf_utils
Yeqing Li's avatar
Yeqing Li committed
25
from official.vision.modeling.layers import nn_layers
Dan Kondratyuk's avatar
Dan Kondratyuk committed
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95

# Default kernel weight decay that may be overridden
KERNEL_WEIGHT_DECAY = 1.5e-5


def normalize_tuple(value: Union[int, Tuple[int, ...]], size: int, name: str):
  """Transforms a single integer or iterable of integers into an integer tuple.

  Arguments:
    value: The value to validate and convert. Could an int, or any iterable of
      ints.
    size: The size of the tuple to be returned.
    name: The name of the argument being validated, e.g. "strides" or
      "kernel_size". This is only used to format error messages.
  Returns:
    A tuple of `size` integers.
  Raises:
    ValueError: If something else than an int/long or iterable thereof was
      passed.
  """
  if isinstance(value, int):
    return (value,) * size
  else:
    try:
      value_tuple = tuple(value)
    except TypeError:
      raise ValueError('The `' + name + '` argument must be a tuple of ' +
                       str(size) + ' integers. Received: ' + str(value))
    if len(value_tuple) != size:
      raise ValueError('The `' + name + '` argument must be a tuple of ' +
                       str(size) + ' integers. Received: ' + str(value))
    for single_value in value_tuple:
      try:
        int(single_value)
      except (ValueError, TypeError):
        raise ValueError('The `' + name + '` argument must be a tuple of ' +
                         str(size) + ' integers. Received: ' + str(value) + ' '
                         'including element ' + str(single_value) + ' of type' +
                         ' ' + str(type(single_value)))
    return value_tuple


@tf.keras.utils.register_keras_serializable(package='Vision')
class Squeeze3D(tf.keras.layers.Layer):
  """Squeeze3D layer to remove singular dimensions."""

  def call(self, inputs):
    """Calls the layer with the given inputs."""
    return tf.squeeze(inputs, axis=(1, 2, 3))


@tf.keras.utils.register_keras_serializable(package='Vision')
class MobileConv2D(tf.keras.layers.Layer):
  """Conv2D layer with extra options to support mobile devices.

  Reshapes 5D video tensor inputs to 4D, allowing Conv2D to run across
  dimensions (2, 3) or (3, 4). Reshapes tensors back to 5D when returning the
  output.
  """

  def __init__(
      self,
      filters: int,
      kernel_size: Union[int, Sequence[int]],
      strides: Union[int, Sequence[int]] = (1, 1),
      padding: str = 'valid',
      data_format: Optional[str] = None,
      dilation_rate: Union[int, Sequence[int]] = (1, 1),
      groups: int = 1,
      use_bias: bool = True,
96
97
      kernel_initializer: str = 'glorot_uniform',
      bias_initializer: str = 'zeros',
Dan Kondratyuk's avatar
Dan Kondratyuk committed
98
99
100
101
102
103
104
      kernel_regularizer: Optional[tf.keras.regularizers.Regularizer] = None,
      bias_regularizer: Optional[tf.keras.regularizers.Regularizer] = None,
      activity_regularizer: Optional[tf.keras.regularizers.Regularizer] = None,
      kernel_constraint: Optional[tf.keras.constraints.Constraint] = None,
      bias_constraint: Optional[tf.keras.constraints.Constraint] = None,
      use_depthwise: bool = False,
      use_temporal: bool = False,
Rebecca Chen's avatar
Rebecca Chen committed
105
      use_buffered_input: bool = False,  # pytype: disable=annotation-type-mismatch  # typed-keras
106
107
      batch_norm_op: Optional[Any] = None,
      activation_op: Optional[Any] = None,
Dan Kondratyuk's avatar
Dan Kondratyuk committed
108
109
110
111
112
113
114
115
116
117
118
119
      **kwargs):  # pylint: disable=g-doc-args
    """Initializes mobile conv2d.

    For the majority of arguments, see tf.keras.layers.Conv2D.

    Args:
      use_depthwise: if True, use DepthwiseConv2D instead of Conv2D
      use_temporal: if True, apply Conv2D starting from the temporal dimension
          instead of the spatial dimensions.
      use_buffered_input: if True, the input is expected to be padded
          beforehand. In effect, calling this layer will use 'valid' padding on
          the temporal dimension to simulate 'causal' padding.
120
121
122
123
      batch_norm_op: A callable object of batch norm layer. If None, no batch
        norm will be applied after the convolution.
      activation_op: A callabel object of activation layer. If None, no
        activation will be applied after the convolution.
Dan Kondratyuk's avatar
Dan Kondratyuk committed
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
      **kwargs: keyword arguments to be passed to this layer.

    Returns:
      A output tensor of the MobileConv2D operation.
    """
    super(MobileConv2D, self).__init__(**kwargs)
    self._filters = filters
    self._kernel_size = kernel_size
    self._strides = strides
    self._padding = padding
    self._data_format = data_format
    self._dilation_rate = dilation_rate
    self._groups = groups
    self._use_bias = use_bias
    self._kernel_initializer = kernel_initializer
    self._bias_initializer = bias_initializer
    self._kernel_regularizer = kernel_regularizer
    self._bias_regularizer = bias_regularizer
    self._activity_regularizer = activity_regularizer
    self._kernel_constraint = kernel_constraint
    self._bias_constraint = bias_constraint
    self._use_depthwise = use_depthwise
    self._use_temporal = use_temporal
    self._use_buffered_input = use_buffered_input
148
149
    self._batch_norm_op = batch_norm_op
    self._activation_op = activation_op
Dan Kondratyuk's avatar
Dan Kondratyuk committed
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233

    kernel_size = normalize_tuple(kernel_size, 2, 'kernel_size')

    if self._use_temporal and kernel_size[1] > 1:
      raise ValueError('Temporal conv with spatial kernel is not supported.')

    if use_depthwise:
      self._conv = nn_layers.DepthwiseConv2D(
          kernel_size=kernel_size,
          strides=strides,
          padding=padding,
          depth_multiplier=1,
          data_format=data_format,
          dilation_rate=dilation_rate,
          use_bias=use_bias,
          depthwise_initializer=kernel_initializer,
          bias_initializer=bias_initializer,
          depthwise_regularizer=kernel_regularizer,
          bias_regularizer=bias_regularizer,
          activity_regularizer=activity_regularizer,
          depthwise_constraint=kernel_constraint,
          bias_constraint=bias_constraint,
          use_buffered_input=use_buffered_input)
    else:
      self._conv = nn_layers.Conv2D(
          filters=filters,
          kernel_size=kernel_size,
          strides=strides,
          padding=padding,
          data_format=data_format,
          dilation_rate=dilation_rate,
          groups=groups,
          use_bias=use_bias,
          kernel_initializer=kernel_initializer,
          bias_initializer=bias_initializer,
          kernel_regularizer=kernel_regularizer,
          bias_regularizer=bias_regularizer,
          activity_regularizer=activity_regularizer,
          kernel_constraint=kernel_constraint,
          bias_constraint=bias_constraint,
          use_buffered_input=use_buffered_input)

  def get_config(self):
    """Returns a dictionary containing the config used for initialization."""
    config = {
        'filters': self._filters,
        'kernel_size': self._kernel_size,
        'strides': self._strides,
        'padding': self._padding,
        'data_format': self._data_format,
        'dilation_rate': self._dilation_rate,
        'groups': self._groups,
        'use_bias': self._use_bias,
        'kernel_initializer': self._kernel_initializer,
        'bias_initializer': self._bias_initializer,
        'kernel_regularizer': self._kernel_regularizer,
        'bias_regularizer': self._bias_regularizer,
        'activity_regularizer': self._activity_regularizer,
        'kernel_constraint': self._kernel_constraint,
        'bias_constraint': self._bias_constraint,
        'use_depthwise': self._use_depthwise,
        'use_temporal': self._use_temporal,
        'use_buffered_input': self._use_buffered_input,
    }
    base_config = super(MobileConv2D, self).get_config()
    return dict(list(base_config.items()) + list(config.items()))

  def call(self, inputs):
    """Calls the layer with the given inputs."""
    if self._use_temporal:
      input_shape = [
          tf.shape(inputs)[0],
          tf.shape(inputs)[1],
          tf.shape(inputs)[2] * tf.shape(inputs)[3],
          inputs.shape[4]]
    else:
      input_shape = [
          tf.shape(inputs)[0] * tf.shape(inputs)[1],
          tf.shape(inputs)[2],
          tf.shape(inputs)[3],
          inputs.shape[4]]
    x = tf.reshape(inputs, input_shape)

    x = self._conv(x)
234
235
236
237
    if self._batch_norm_op is not None:
      x = self._batch_norm_op(x)
    if self._activation_op is not None:
      x = self._activation_op(x)
Dan Kondratyuk's avatar
Dan Kondratyuk committed
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274

    if self._use_temporal:
      output_shape = [
          tf.shape(x)[0],
          tf.shape(x)[1],
          tf.shape(inputs)[2],
          tf.shape(inputs)[3],
          x.shape[3]]
    else:
      output_shape = [
          tf.shape(inputs)[0],
          tf.shape(inputs)[1],
          tf.shape(x)[1],
          tf.shape(x)[2],
          x.shape[3]]
    x = tf.reshape(x, output_shape)

    return x


@tf.keras.utils.register_keras_serializable(package='Vision')
class ConvBlock(tf.keras.layers.Layer):
  """A Conv followed by optional BatchNorm and Activation."""

  def __init__(
      self,
      filters: int,
      kernel_size: Union[int, Sequence[int]],
      strides: Union[int, Sequence[int]] = 1,
      depthwise: bool = False,
      causal: bool = False,
      use_bias: bool = False,
      kernel_initializer: tf.keras.initializers.Initializer = 'HeNormal',
      kernel_regularizer: Optional[tf.keras.regularizers.Regularizer] =
      tf.keras.regularizers.L2(KERNEL_WEIGHT_DECAY),
      use_batch_norm: bool = True,
      batch_norm_layer: tf.keras.layers.Layer =
Dan Kondratyuk's avatar
Dan Kondratyuk committed
275
      tf.keras.layers.BatchNormalization,
Dan Kondratyuk's avatar
Dan Kondratyuk committed
276
277
278
279
      batch_norm_momentum: float = 0.99,
      batch_norm_epsilon: float = 1e-3,
      activation: Optional[Any] = None,
      conv_type: str = '3d',
Rebecca Chen's avatar
Rebecca Chen committed
280
      use_buffered_input: bool = False,  # pytype: disable=annotation-type-mismatch  # typed-keras
Dan Kondratyuk's avatar
Dan Kondratyuk committed
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
      **kwargs):
    """Initializes a conv block.

    Args:
      filters: filters for the conv operation.
      kernel_size: kernel size for the conv operation.
      strides: strides for the conv operation.
      depthwise: if True, use DepthwiseConv2D instead of Conv2D
      causal: if True, use causal mode for the conv operation.
      use_bias: use bias for the conv operation.
      kernel_initializer: kernel initializer for the conv operation.
      kernel_regularizer: kernel regularizer for the conv operation.
      use_batch_norm: if True, apply batch norm after the conv operation.
      batch_norm_layer: class to use for batch norm, if applied.
      batch_norm_momentum: momentum of the batch norm operation, if applied.
      batch_norm_epsilon: epsilon of the batch norm operation, if applied.
      activation: activation after the conv and batch norm operations.
      conv_type: '3d', '2plus1d', or '3d_2plus1d'. '3d' uses the default 3D
          ops. '2plus1d' split any 3D ops into two sequential 2D ops with their
          own batch norm and activation. '3d_2plus1d' is like '2plus1d', but
          uses two sequential 3D ops instead.
      use_buffered_input: if True, the input is expected to be padded
          beforehand. In effect, calling this layer will use 'valid' padding on
          the temporal dimension to simulate 'causal' padding.
      **kwargs: keyword arguments to be passed to this layer.

    Returns:
      A output tensor of the ConvBlock operation.
    """

    super(ConvBlock, self).__init__(**kwargs)

    kernel_size = normalize_tuple(kernel_size, 3, 'kernel_size')
    strides = normalize_tuple(strides, 3, 'strides')

    self._filters = filters
    self._kernel_size = kernel_size
    self._strides = strides
    self._depthwise = depthwise
    self._causal = causal
    self._use_bias = use_bias
    self._kernel_initializer = kernel_initializer
    self._kernel_regularizer = kernel_regularizer
    self._use_batch_norm = use_batch_norm
    self._batch_norm_layer = batch_norm_layer
    self._batch_norm_momentum = batch_norm_momentum
    self._batch_norm_epsilon = batch_norm_epsilon
    self._activation = activation
    self._conv_type = conv_type
    self._use_buffered_input = use_buffered_input

    if activation is not None:
Hao Wu's avatar
Hao Wu committed
333
334
      self._activation_layer = tf_utils.get_activation(
          activation, use_keras_layer=True)
Dan Kondratyuk's avatar
Dan Kondratyuk committed
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
    else:
      self._activation_layer = None

    self._groups = None

  def get_config(self):
    """Returns a dictionary containing the config used for initialization."""
    config = {
        'filters': self._filters,
        'kernel_size': self._kernel_size,
        'strides': self._strides,
        'depthwise': self._depthwise,
        'causal': self._causal,
        'use_bias': self._use_bias,
        'kernel_initializer': self._kernel_initializer,
        'kernel_regularizer': self._kernel_regularizer,
        'use_batch_norm': self._use_batch_norm,
        'batch_norm_momentum': self._batch_norm_momentum,
        'batch_norm_epsilon': self._batch_norm_epsilon,
        'activation': self._activation,
        'conv_type': self._conv_type,
        'use_buffered_input': self._use_buffered_input,
    }
    base_config = super(ConvBlock, self).get_config()
    return dict(list(base_config.items()) + list(config.items()))

  def build(self, input_shape):
    """Builds the layer with the given input shape."""
    padding = 'causal' if self._causal else 'same'
    self._groups = input_shape[-1] if self._depthwise else 1

366
367
368
369
370
371
372
373
374
375
376
377
    self._batch_norm = None
    self._batch_norm_temporal = None
    if self._use_batch_norm:
      self._batch_norm = self._batch_norm_layer(
          momentum=self._batch_norm_momentum,
          epsilon=self._batch_norm_epsilon,
          name='bn')
      if self._conv_type != '3d' and self._kernel_size[0] > 1:
        self._batch_norm_temporal = self._batch_norm_layer(
            momentum=self._batch_norm_momentum,
            epsilon=self._batch_norm_epsilon,
            name='bn_temporal')
Dan Kondratyuk's avatar
Dan Kondratyuk committed
378

379
    self._conv_temporal = None
Dan Kondratyuk's avatar
Dan Kondratyuk committed
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
    if self._conv_type == '3d_2plus1d' and self._kernel_size[0] > 1:
      self._conv = nn_layers.Conv3D(
          self._filters,
          (1, self._kernel_size[1], self._kernel_size[2]),
          strides=(1, self._strides[1], self._strides[2]),
          padding='same',
          groups=self._groups,
          use_bias=self._use_bias,
          kernel_initializer=self._kernel_initializer,
          kernel_regularizer=self._kernel_regularizer,
          use_buffered_input=False,
          name='conv3d')
      self._conv_temporal = nn_layers.Conv3D(
          self._filters,
          (self._kernel_size[0], 1, 1),
          strides=(self._strides[0], 1, 1),
          padding=padding,
          groups=self._groups,
          use_bias=self._use_bias,
          kernel_initializer=self._kernel_initializer,
          kernel_regularizer=self._kernel_regularizer,
          use_buffered_input=self._use_buffered_input,
          name='conv3d_temporal')
    elif self._conv_type == '2plus1d':
      self._conv = MobileConv2D(
          self._filters,
          (self._kernel_size[1], self._kernel_size[2]),
          strides=(self._strides[1], self._strides[2]),
          padding='same',
          use_depthwise=self._depthwise,
          groups=self._groups,
          use_bias=self._use_bias,
          kernel_initializer=self._kernel_initializer,
          kernel_regularizer=self._kernel_regularizer,
          use_buffered_input=False,
415
416
          batch_norm_op=self._batch_norm,
          activation_op=self._activation_layer,
Dan Kondratyuk's avatar
Dan Kondratyuk committed
417
418
419
420
421
422
423
424
425
426
427
428
429
430
          name='conv2d')
      if self._kernel_size[0] > 1:
        self._conv_temporal = MobileConv2D(
            self._filters,
            (self._kernel_size[0], 1),
            strides=(self._strides[0], 1),
            padding=padding,
            use_temporal=True,
            use_depthwise=self._depthwise,
            groups=self._groups,
            use_bias=self._use_bias,
            kernel_initializer=self._kernel_initializer,
            kernel_regularizer=self._kernel_regularizer,
            use_buffered_input=self._use_buffered_input,
431
432
            batch_norm_op=self._batch_norm_temporal,
            activation_op=self._activation_layer,
Dan Kondratyuk's avatar
Dan Kondratyuk committed
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
            name='conv2d_temporal')
    else:
      self._conv = nn_layers.Conv3D(
          self._filters,
          self._kernel_size,
          strides=self._strides,
          padding=padding,
          groups=self._groups,
          use_bias=self._use_bias,
          kernel_initializer=self._kernel_initializer,
          kernel_regularizer=self._kernel_regularizer,
          use_buffered_input=self._use_buffered_input,
          name='conv3d')

    super(ConvBlock, self).build(input_shape)

  def call(self, inputs):
    """Calls the layer with the given inputs."""
    x = inputs

453
454
455
    # bn_op and activation_op are folded into the '2plus1d' conv layer so that
    # we do not explicitly call them here.
    # TODO(lzyuan): clean the conv layers api once the models are re-trained.
Dan Kondratyuk's avatar
Dan Kondratyuk committed
456
    x = self._conv(x)
457
    if self._batch_norm is not None and self._conv_type != '2plus1d':
Dan Kondratyuk's avatar
Dan Kondratyuk committed
458
      x = self._batch_norm(x)
459
    if self._activation_layer is not None and self._conv_type != '2plus1d':
Dan Kondratyuk's avatar
Dan Kondratyuk committed
460
461
462
463
      x = self._activation_layer(x)

    if self._conv_temporal is not None:
      x = self._conv_temporal(x)
464
      if self._batch_norm_temporal is not None and self._conv_type != '2plus1d':
Dan Kondratyuk's avatar
Dan Kondratyuk committed
465
        x = self._batch_norm_temporal(x)
466
      if self._activation_layer is not None and self._conv_type != '2plus1d':
Dan Kondratyuk's avatar
Dan Kondratyuk committed
467
468
469
470
471
472
473
474
475
        x = self._activation_layer(x)

    return x


@tf.keras.utils.register_keras_serializable(package='Vision')
class StreamBuffer(tf.keras.layers.Layer):
  """Stream buffer wrapper which caches activations of previous frames."""

476
477
478
479
  def __init__(self,
               buffer_size: int,
               state_prefix: Optional[str] = None,
               **kwargs):
Dan Kondratyuk's avatar
Dan Kondratyuk committed
480
481
482
483
    """Initializes a stream buffer.

    Args:
      buffer_size: the number of input frames to cache.
484
      state_prefix: a prefix string to identify states.
Dan Kondratyuk's avatar
Dan Kondratyuk committed
485
486
487
488
489
490
491
      **kwargs: keyword arguments to be passed to this layer.

    Returns:
      A output tensor of the StreamBuffer operation.
    """
    super(StreamBuffer, self).__init__(**kwargs)

492
493
    state_prefix = state_prefix if state_prefix is not None else ''
    self._state_prefix = state_prefix
494
    self._state_name = f'{state_prefix}_stream_buffer'
Dan Kondratyuk's avatar
Dan Kondratyuk committed
495
496
497
498
499
500
    self._buffer_size = buffer_size

  def get_config(self):
    """Returns a dictionary containing the config used for initialization."""
    config = {
        'buffer_size': self._buffer_size,
501
        'state_prefix': self._state_prefix,
Dan Kondratyuk's avatar
Dan Kondratyuk committed
502
503
504
505
    }
    base_config = super(StreamBuffer, self).get_config()
    return dict(list(base_config.items()) + list(config.items()))

506
507
508
509
510
  def call(
      self,
      inputs: tf.Tensor,
      states: Optional[nn_layers.States] = None,
  ) -> Tuple[Any, nn_layers.States]:
Dan Kondratyuk's avatar
Dan Kondratyuk committed
511
512
513
514
515
516
    """Calls the layer with the given inputs.

    Args:
      inputs: the input tensor.
      states: a dict of states such that, if any of the keys match for this
          layer, will overwrite the contents of the buffer(s).
517
          Expected keys include `state_prefix + '_stream_buffer'`.
Dan Kondratyuk's avatar
Dan Kondratyuk committed
518
519
520
521
522
523
524

    Returns:
      the output tensor and states
    """
    states = dict(states) if states is not None else {}
    buffer = states.get(self._state_name, None)

525
526
527
    # Create the buffer if it does not exist in the states.
    # Output buffer shape:
    # [batch_size, buffer_size, input_height, input_width, num_channels]
Dan Kondratyuk's avatar
Dan Kondratyuk committed
528
529
530
531
532
    if buffer is None:
      shape = tf.shape(inputs)
      buffer = tf.zeros(
          [shape[0], self._buffer_size, shape[2], shape[3], shape[4]],
          dtype=inputs.dtype)
533
534

    # tf.pad has limited support for tf lite, so use tf.concat instead.
Dan Kondratyuk's avatar
Dan Kondratyuk committed
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
    full_inputs = tf.concat([buffer, inputs], axis=1)

    # Cache the last b frames of the input where b is the buffer size and f
    # is the number of input frames. If b > f, then we will cache the last b - f
    # frames from the previous buffer concatenated with the current f input
    # frames.
    new_buffer = full_inputs[:, -self._buffer_size:]
    states[self._state_name] = new_buffer

    return full_inputs, states


@tf.keras.utils.register_keras_serializable(package='Vision')
class StreamConvBlock(ConvBlock):
  """ConvBlock with StreamBuffer."""

  def __init__(
      self,
      filters: int,
      kernel_size: Union[int, Sequence[int]],
      strides: Union[int, Sequence[int]] = 1,
      depthwise: bool = False,
      causal: bool = False,
      use_bias: bool = False,
      kernel_initializer: tf.keras.initializers.Initializer = 'HeNormal',
560
561
      kernel_regularizer: Optional[tf.keras.regularizers.Regularizer] = tf.keras
      .regularizers.L2(KERNEL_WEIGHT_DECAY),
Dan Kondratyuk's avatar
Dan Kondratyuk committed
562
      use_batch_norm: bool = True,
Dan Kondratyuk's avatar
Dan Kondratyuk committed
563
564
      batch_norm_layer: tf.keras.layers.Layer =
      tf.keras.layers.BatchNormalization,
Dan Kondratyuk's avatar
Dan Kondratyuk committed
565
566
567
568
      batch_norm_momentum: float = 0.99,
      batch_norm_epsilon: float = 1e-3,
      activation: Optional[Any] = None,
      conv_type: str = '3d',
Rebecca Chen's avatar
Rebecca Chen committed
569
      state_prefix: Optional[str] = None,  # pytype: disable=annotation-type-mismatch  # typed-keras
Dan Kondratyuk's avatar
Dan Kondratyuk committed
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
      **kwargs):
    """Initializes a stream conv block.

    Args:
      filters: filters for the conv operation.
      kernel_size: kernel size for the conv operation.
      strides: strides for the conv operation.
      depthwise: if True, use DepthwiseConv2D instead of Conv2D
      causal: if True, use causal mode for the conv operation.
      use_bias: use bias for the conv operation.
      kernel_initializer: kernel initializer for the conv operation.
      kernel_regularizer: kernel regularizer for the conv operation.
      use_batch_norm: if True, apply batch norm after the conv operation.
      batch_norm_layer: class to use for batch norm, if applied.
      batch_norm_momentum: momentum of the batch norm operation, if applied.
      batch_norm_epsilon: epsilon of the batch norm operation, if applied.
      activation: activation after the conv and batch norm operations.
      conv_type: '3d', '2plus1d', or '3d_2plus1d'. '3d' uses the default 3D
          ops. '2plus1d' split any 3D ops into two sequential 2D ops with their
          own batch norm and activation. '3d_2plus1d' is like '2plus1d', but
          uses two sequential 3D ops instead.
591
      state_prefix: a prefix string to identify states.
Dan Kondratyuk's avatar
Dan Kondratyuk committed
592
593
594
595
596
597
598
599
600
      **kwargs: keyword arguments to be passed to this layer.

    Returns:
      A output tensor of the StreamConvBlock operation.
    """
    kernel_size = normalize_tuple(kernel_size, 3, 'kernel_size')
    buffer_size = kernel_size[0] - 1
    use_buffer = buffer_size > 0 and causal

601
602
    self._state_prefix = state_prefix

Dan Kondratyuk's avatar
Dan Kondratyuk committed
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
    super(StreamConvBlock, self).__init__(
        filters,
        kernel_size,
        strides=strides,
        depthwise=depthwise,
        causal=causal,
        use_bias=use_bias,
        kernel_initializer=kernel_initializer,
        kernel_regularizer=kernel_regularizer,
        use_batch_norm=use_batch_norm,
        batch_norm_layer=batch_norm_layer,
        batch_norm_momentum=batch_norm_momentum,
        batch_norm_epsilon=batch_norm_epsilon,
        activation=activation,
        conv_type=conv_type,
        use_buffered_input=use_buffer,
        **kwargs)

    self._stream_buffer = None
    if use_buffer:
      self._stream_buffer = StreamBuffer(
624
          buffer_size=buffer_size, state_prefix=state_prefix)
Dan Kondratyuk's avatar
Dan Kondratyuk committed
625
626
627

  def get_config(self):
    """Returns a dictionary containing the config used for initialization."""
628
    config = {'state_prefix': self._state_prefix}
Dan Kondratyuk's avatar
Dan Kondratyuk committed
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
    base_config = super(StreamConvBlock, self).get_config()
    return dict(list(base_config.items()) + list(config.items()))

  def call(self,
           inputs: tf.Tensor,
           states: Optional[nn_layers.States] = None
           ) -> Tuple[tf.Tensor, nn_layers.States]:
    """Calls the layer with the given inputs.

    Args:
      inputs: the input tensor.
      states: a dict of states such that, if any of the keys match for this
          layer, will overwrite the contents of the buffer(s).

    Returns:
      the output tensor and states
    """
    states = dict(states) if states is not None else {}

    x = inputs
649
650
651

    # If we have no separate temporal conv, use the buffer before the 3D conv.
    if self._conv_temporal is None and self._stream_buffer is not None:
Dan Kondratyuk's avatar
Dan Kondratyuk committed
652
      x, states = self._stream_buffer(x, states=states)
653

654
655
656
    # bn_op and activation_op are folded into the '2plus1d' conv layer so that
    # we do not explicitly call them here.
    # TODO(lzyuan): clean the conv layers api once the models are re-trained.
657
    x = self._conv(x)
658
    if self._batch_norm is not None and self._conv_type != '2plus1d':
659
      x = self._batch_norm(x)
660
    if self._activation_layer is not None and self._conv_type != '2plus1d':
661
662
663
664
665
666
667
668
669
      x = self._activation_layer(x)

    if self._conv_temporal is not None:
      if self._stream_buffer is not None:
        # If we have a separate temporal conv, use the buffer before the
        # 1D conv instead (otherwise, we may waste computation on the 2D conv).
        x, states = self._stream_buffer(x, states=states)

      x = self._conv_temporal(x)
670
      if self._batch_norm_temporal is not None and self._conv_type != '2plus1d':
671
        x = self._batch_norm_temporal(x)
672
      if self._activation_layer is not None and self._conv_type != '2plus1d':
673
        x = self._activation_layer(x)
Dan Kondratyuk's avatar
Dan Kondratyuk committed
674
675
676
677
678
679
680
681
682
683
684
685
686
687

    return x, states


@tf.keras.utils.register_keras_serializable(package='Vision')
class StreamSqueezeExcitation(tf.keras.layers.Layer):
  """Squeeze and excitation layer with causal mode.

  Reference: https://arxiv.org/pdf/1709.01507.pdf
  """

  def __init__(
      self,
      hidden_filters: int,
Dan Kondratyuk's avatar
Dan Kondratyuk committed
688
      se_type: str = '3d',
Dan Kondratyuk's avatar
Dan Kondratyuk committed
689
690
691
692
693
      activation: nn_layers.Activation = 'swish',
      gating_activation: nn_layers.Activation = 'sigmoid',
      causal: bool = False,
      conv_type: str = '3d',
      kernel_initializer: tf.keras.initializers.Initializer = 'HeNormal',
694
695
      kernel_regularizer: Optional[tf.keras.regularizers.Regularizer] = tf.keras
      .regularizers.L2(KERNEL_WEIGHT_DECAY),
Dan Kondratyuk's avatar
Dan Kondratyuk committed
696
      use_positional_encoding: bool = False,
Rebecca Chen's avatar
Rebecca Chen committed
697
      state_prefix: Optional[str] = None,  # pytype: disable=annotation-type-mismatch  # typed-keras
Dan Kondratyuk's avatar
Dan Kondratyuk committed
698
699
700
701
702
      **kwargs):
    """Implementation for squeeze and excitation.

    Args:
      hidden_filters: The hidden filters of squeeze excite.
Dan Kondratyuk's avatar
Dan Kondratyuk committed
703
704
705
706
      se_type: '3d', '2d', or '2plus3d'. '3d' uses the default 3D
          spatiotemporal global average pooling for squeeze excitation. '2d'
          uses 2D spatial global average pooling  on each frame. '2plus3d'
          concatenates both 3D and 2D global average pooling.
Dan Kondratyuk's avatar
Dan Kondratyuk committed
707
708
709
710
711
712
713
714
715
716
717
      activation: name of the activation function.
      gating_activation: name of the activation function for gating.
      causal: if True, use causal mode in the global average pool.
      conv_type: '3d', '2plus1d', or '3d_2plus1d'. '3d' uses the default 3D
          ops. '2plus1d' split any 3D ops into two sequential 2D ops with their
          own batch norm and activation. '3d_2plus1d' is like '2plus1d', but
          uses two sequential 3D ops instead.
      kernel_initializer: kernel initializer for the conv operations.
      kernel_regularizer: kernel regularizer for the conv operation.
      use_positional_encoding: add a positional encoding after the (cumulative)
          global average pooling layer.
718
      state_prefix: a prefix string to identify states.
Dan Kondratyuk's avatar
Dan Kondratyuk committed
719
720
721
722
723
      **kwargs: keyword arguments to be passed to this layer.
    """
    super(StreamSqueezeExcitation, self).__init__(**kwargs)

    self._hidden_filters = hidden_filters
Dan Kondratyuk's avatar
Dan Kondratyuk committed
724
    self._se_type = se_type
Dan Kondratyuk's avatar
Dan Kondratyuk committed
725
726
727
728
729
730
731
    self._activation = activation
    self._gating_activation = gating_activation
    self._causal = causal
    self._conv_type = conv_type
    self._kernel_initializer = kernel_initializer
    self._kernel_regularizer = kernel_regularizer
    self._use_positional_encoding = use_positional_encoding
732
    self._state_prefix = state_prefix
Dan Kondratyuk's avatar
Dan Kondratyuk committed
733

Dan Kondratyuk's avatar
Dan Kondratyuk committed
734
    self._spatiotemporal_pool = nn_layers.GlobalAveragePool3D(
735
        keepdims=True, causal=causal, state_prefix=state_prefix)
Dan Kondratyuk's avatar
Dan Kondratyuk committed
736
    self._spatial_pool = nn_layers.SpatialAveragePool3D(keepdims=True)
Dan Kondratyuk's avatar
Dan Kondratyuk committed
737

738
    self._pos_encoding = None
Dan Kondratyuk's avatar
Dan Kondratyuk committed
739
    if use_positional_encoding:
740
741
      self._pos_encoding = nn_layers.PositionalEncoding(
          initializer='zeros', state_prefix=state_prefix)
Dan Kondratyuk's avatar
Dan Kondratyuk committed
742
743
744
745
746

  def get_config(self):
    """Returns a dictionary containing the config used for initialization."""
    config = {
        'hidden_filters': self._hidden_filters,
Dan Kondratyuk's avatar
Dan Kondratyuk committed
747
        'se_type': self._se_type,
Dan Kondratyuk's avatar
Dan Kondratyuk committed
748
749
750
751
752
753
754
        'activation': self._activation,
        'gating_activation': self._gating_activation,
        'causal': self._causal,
        'conv_type': self._conv_type,
        'kernel_initializer': self._kernel_initializer,
        'kernel_regularizer': self._kernel_regularizer,
        'use_positional_encoding': self._use_positional_encoding,
755
        'state_prefix': self._state_prefix,
Dan Kondratyuk's avatar
Dan Kondratyuk committed
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
    }
    base_config = super(StreamSqueezeExcitation, self).get_config()
    return dict(list(base_config.items()) + list(config.items()))

  def build(self, input_shape):
    """Builds the layer with the given input shape."""
    self._se_reduce = ConvBlock(
        filters=self._hidden_filters,
        kernel_size=1,
        causal=self._causal,
        use_bias=True,
        kernel_initializer=self._kernel_initializer,
        kernel_regularizer=self._kernel_regularizer,
        use_batch_norm=False,
        activation=self._activation,
        conv_type=self._conv_type,
        name='se_reduce')

    self._se_expand = ConvBlock(
        filters=input_shape[-1],
        kernel_size=1,
        causal=self._causal,
        use_bias=True,
        kernel_initializer=self._kernel_initializer,
        kernel_regularizer=self._kernel_regularizer,
        use_batch_norm=False,
        activation=self._gating_activation,
        conv_type=self._conv_type,
        name='se_expand')

    super(StreamSqueezeExcitation, self).build(input_shape)

  def call(self,
           inputs: tf.Tensor,
           states: Optional[nn_layers.States] = None
           ) -> Tuple[tf.Tensor, nn_layers.States]:
    """Calls the layer with the given inputs.

    Args:
      inputs: the input tensor.
      states: a dict of states such that, if any of the keys match for this
          layer, will overwrite the contents of the buffer(s).

    Returns:
      the output tensor and states
    """
    states = dict(states) if states is not None else {}

Dan Kondratyuk's avatar
Dan Kondratyuk committed
804
    if self._se_type == '3d':
805
806
      x, states = self._spatiotemporal_pool(
          inputs, states=states, output_states=True)
Dan Kondratyuk's avatar
Dan Kondratyuk committed
807
808
809
810
    elif self._se_type == '2d':
      x = self._spatial_pool(inputs)
    elif self._se_type == '2plus3d':
      x_space = self._spatial_pool(inputs)
811
812
      x, states = self._spatiotemporal_pool(
          x_space, states=states, output_states=True)
Dan Kondratyuk's avatar
Dan Kondratyuk committed
813
814
815
816
817
818
819
820

      if not self._causal:
        x = tf.tile(x, [1, tf.shape(inputs)[1], 1, 1, 1])

      x = tf.concat([x, x_space], axis=-1)
    else:
      raise ValueError('Unknown Squeeze Excitation type {}'.format(
          self._se_type))
Dan Kondratyuk's avatar
Dan Kondratyuk committed
821
822

    if self._pos_encoding is not None:
823
      x, states = self._pos_encoding(x, states=states)
Dan Kondratyuk's avatar
Dan Kondratyuk committed
824
825
826

    x = self._se_reduce(x)
    x = self._se_expand(x)
Dan Kondratyuk's avatar
Dan Kondratyuk committed
827

Dan Kondratyuk's avatar
Dan Kondratyuk committed
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
    return x * inputs, states


@tf.keras.utils.register_keras_serializable(package='Vision')
class MobileBottleneck(tf.keras.layers.Layer):
  """A depthwise inverted bottleneck block.

  Uses dependency injection to allow flexible definition of different layers
  within this block.
  """

  def __init__(self,
               expansion_layer: tf.keras.layers.Layer,
               feature_layer: tf.keras.layers.Layer,
               projection_layer: tf.keras.layers.Layer,
               attention_layer: Optional[tf.keras.layers.Layer] = None,
               skip_layer: Optional[tf.keras.layers.Layer] = None,
               stochastic_depth_drop_rate: Optional[float] = None,
               **kwargs):
    """Implementation for mobile bottleneck.

    Args:
      expansion_layer: initial layer used for pointwise expansion.
      feature_layer: main layer used for computing 3D features.
      projection_layer: layer used for pointwise projection.
      attention_layer: optional layer used for attention-like operations (e.g.,
          squeeze excite).
      skip_layer: optional skip layer used to project the input before summing
          with the output for the residual connection.
      stochastic_depth_drop_rate: optional drop rate for stochastic depth.
      **kwargs: keyword arguments to be passed to this layer.
    """
    super(MobileBottleneck, self).__init__(**kwargs)

    self._projection_layer = projection_layer
    self._attention_layer = attention_layer
    self._skip_layer = skip_layer
    self._stochastic_depth_drop_rate = stochastic_depth_drop_rate
    self._identity = tf.keras.layers.Activation(tf.identity)
    self._rezero = nn_layers.Scale(initializer='zeros', name='rezero')

    if stochastic_depth_drop_rate:
      self._stochastic_depth = nn_layers.StochasticDepth(
          stochastic_depth_drop_rate, name='stochastic_depth')
    else:
      self._stochastic_depth = None

    self._feature_layer = feature_layer
    self._expansion_layer = expansion_layer

  def get_config(self):
    """Returns a dictionary containing the config used for initialization."""
    config = {
        'stochastic_depth_drop_rate': self._stochastic_depth_drop_rate,
    }
    base_config = super(MobileBottleneck, self).get_config()
    return dict(list(base_config.items()) + list(config.items()))

  def call(self,
           inputs: tf.Tensor,
           states: Optional[nn_layers.States] = None
           ) -> Tuple[tf.Tensor, nn_layers.States]:
    """Calls the layer with the given inputs.

    Args:
      inputs: the input tensor.
      states: a dict of states such that, if any of the keys match for this
          layer, will overwrite the contents of the buffer(s).

    Returns:
      the output tensor and states
    """
    states = dict(states) if states is not None else {}

    x = self._expansion_layer(inputs)
    x, states = self._feature_layer(x, states=states)
904
905
    if self._attention_layer is not None:
      x, states = self._attention_layer(x, states=states)
Dan Kondratyuk's avatar
Dan Kondratyuk committed
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
    x = self._projection_layer(x)

    # Add identity so that the ops are ordered as written. This is useful for,
    # e.g., quantization.
    x = self._identity(x)
    x = self._rezero(x)

    if self._stochastic_depth is not None:
      x = self._stochastic_depth(x)

    if self._skip_layer is not None:
      skip = self._skip_layer(inputs)
    else:
      skip = inputs

    return x + skip, states


@tf.keras.utils.register_keras_serializable(package='Vision')
class SkipBlock(tf.keras.layers.Layer):
  """Skip block for bottleneck blocks."""

  def __init__(
      self,
      out_filters: int,
      downsample: bool = False,
      conv_type: str = '3d',
      kernel_initializer: tf.keras.initializers.Initializer = 'HeNormal',
      kernel_regularizer: Optional[tf.keras.regularizers.Regularizer] =
      tf.keras.regularizers.L2(KERNEL_WEIGHT_DECAY),
      batch_norm_layer: tf.keras.layers.Layer =
Dan Kondratyuk's avatar
Dan Kondratyuk committed
937
      tf.keras.layers.BatchNormalization,
Dan Kondratyuk's avatar
Dan Kondratyuk committed
938
      batch_norm_momentum: float = 0.99,
Rebecca Chen's avatar
Rebecca Chen committed
939
      batch_norm_epsilon: float = 1e-3,  # pytype: disable=annotation-type-mismatch  # typed-keras
Dan Kondratyuk's avatar
Dan Kondratyuk committed
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
      **kwargs):
    """Implementation for skip block.

    Args:
      out_filters: the number of projected output filters.
      downsample: if True, downsamples the input by a factor of 2 by applying
          average pooling with a 3x3 kernel size on the spatial dimensions.
      conv_type: '3d', '2plus1d', or '3d_2plus1d'. '3d' uses the default 3D
          ops. '2plus1d' split any 3D ops into two sequential 2D ops with their
          own batch norm and activation. '3d_2plus1d' is like '2plus1d', but
          uses two sequential 3D ops instead.
      kernel_initializer: kernel initializer for the conv operations.
      kernel_regularizer: kernel regularizer for the conv projection.
      batch_norm_layer: class to use for batch norm.
      batch_norm_momentum: momentum of the batch norm operation.
      batch_norm_epsilon: epsilon of the batch norm operation.
      **kwargs: keyword arguments to be passed to this layer.
    """
    super(SkipBlock, self).__init__(**kwargs)

    self._out_filters = out_filters
    self._downsample = downsample
    self._conv_type = conv_type
    self._kernel_initializer = kernel_initializer
    self._kernel_regularizer = kernel_regularizer
    self._batch_norm_layer = batch_norm_layer
    self._batch_norm_momentum = batch_norm_momentum
    self._batch_norm_epsilon = batch_norm_epsilon

    self._projection = ConvBlock(
        filters=self._out_filters,
        kernel_size=1,
        conv_type=conv_type,
        kernel_initializer=kernel_initializer,
        kernel_regularizer=kernel_regularizer,
        use_batch_norm=True,
        batch_norm_layer=self._batch_norm_layer,
        batch_norm_momentum=self._batch_norm_momentum,
        batch_norm_epsilon=self._batch_norm_epsilon,
        name='skip_project')

    if downsample:
      if self._conv_type == '2plus1d':
        self._pool = tf.keras.layers.AveragePooling2D(
            pool_size=(3, 3),
            strides=(2, 2),
            padding='same',
            name='skip_pool')
      else:
        self._pool = tf.keras.layers.AveragePooling3D(
            pool_size=(1, 3, 3),
            strides=(1, 2, 2),
            padding='same',
            name='skip_pool')
    else:
      self._pool = None

  def get_config(self):
    """Returns a dictionary containing the config used for initialization."""
    config = {
        'out_filters': self._out_filters,
        'downsample': self._downsample,
        'conv_type': self._conv_type,
        'kernel_initializer': self._kernel_initializer,
        'kernel_regularizer': self._kernel_regularizer,
        'batch_norm_momentum': self._batch_norm_momentum,
        'batch_norm_epsilon': self._batch_norm_epsilon,
    }
    base_config = super(SkipBlock, self).get_config()
    return dict(list(base_config.items()) + list(config.items()))

  def call(self, inputs):
    """Calls the layer with the given inputs."""
    x = inputs
    if self._pool is not None:
      if self._conv_type == '2plus1d':
        x = tf.reshape(x, [-1, tf.shape(x)[2], tf.shape(x)[3], x.shape[4]])

      x = self._pool(x)

      if self._conv_type == '2plus1d':
        x = tf.reshape(
            x,
            [tf.shape(inputs)[0], -1, tf.shape(x)[1],
             tf.shape(x)[2], x.shape[3]])
    return self._projection(x)


@tf.keras.utils.register_keras_serializable(package='Vision')
class MovinetBlock(tf.keras.layers.Layer):
  """A basic block for MoViNets.

  Applies a mobile inverted bottleneck with pointwise expansion, 3D depthwise
  convolution, 3D squeeze excite, pointwise projection, and residual connection.
  """

  def __init__(
      self,
      out_filters: int,
      expand_filters: int,
      kernel_size: Union[int, Sequence[int]] = (3, 3, 3),
      strides: Union[int, Sequence[int]] = (1, 1, 1),
      causal: bool = False,
      activation: nn_layers.Activation = 'swish',
1044
      gating_activation: nn_layers.Activation = 'sigmoid',
Dan Kondratyuk's avatar
Dan Kondratyuk committed
1045
1046
1047
      se_ratio: float = 0.25,
      stochastic_depth_drop_rate: float = 0.,
      conv_type: str = '3d',
Dan Kondratyuk's avatar
Dan Kondratyuk committed
1048
      se_type: str = '3d',
Dan Kondratyuk's avatar
Dan Kondratyuk committed
1049
1050
      use_positional_encoding: bool = False,
      kernel_initializer: tf.keras.initializers.Initializer = 'HeNormal',
1051
1052
      kernel_regularizer: Optional[tf.keras.regularizers.Regularizer] = tf.keras
      .regularizers.L2(KERNEL_WEIGHT_DECAY),
Dan Kondratyuk's avatar
Dan Kondratyuk committed
1053
1054
      batch_norm_layer: tf.keras.layers.Layer =
      tf.keras.layers.BatchNormalization,
Dan Kondratyuk's avatar
Dan Kondratyuk committed
1055
1056
      batch_norm_momentum: float = 0.99,
      batch_norm_epsilon: float = 1e-3,
Rebecca Chen's avatar
Rebecca Chen committed
1057
      state_prefix: Optional[str] = None,  # pytype: disable=annotation-type-mismatch  # typed-keras
Dan Kondratyuk's avatar
Dan Kondratyuk committed
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
      **kwargs):
    """Implementation for MoViNet block.

    Args:
      out_filters: number of output filters for the final projection.
      expand_filters: number of expansion filters after the input.
      kernel_size: kernel size of the main depthwise convolution.
      strides: strides of the main depthwise convolution.
      causal: if True, run the temporal convolutions in causal mode.
      activation: activation to use across all conv operations.
1068
      gating_activation: gating activation to use in squeeze excitation layers.
Dan Kondratyuk's avatar
Dan Kondratyuk committed
1069
1070
1071
1072
1073
1074
      se_ratio: squeeze excite filters ratio.
      stochastic_depth_drop_rate: optional drop rate for stochastic depth.
      conv_type: '3d', '2plus1d', or '3d_2plus1d'. '3d' uses the default 3D
          ops. '2plus1d' split any 3D ops into two sequential 2D ops with their
          own batch norm and activation. '3d_2plus1d' is like '2plus1d', but
          uses two sequential 3D ops instead.
Dan Kondratyuk's avatar
Dan Kondratyuk committed
1075
1076
1077
1078
      se_type: '3d', '2d', or '2plus3d'. '3d' uses the default 3D
          spatiotemporal global average pooling for squeeze excitation. '2d'
          uses 2D spatial global average pooling  on each frame. '2plus3d'
          concatenates both 3D and 2D global average pooling.
Dan Kondratyuk's avatar
Dan Kondratyuk committed
1079
1080
1081
1082
1083
1084
1085
      use_positional_encoding: add a positional encoding after the (cumulative)
          global average pooling layer in the squeeze excite layer.
      kernel_initializer: kernel initializer for the conv operations.
      kernel_regularizer: kernel regularizer for the conv operations.
      batch_norm_layer: class to use for batch norm.
      batch_norm_momentum: momentum of the batch norm operation.
      batch_norm_epsilon: epsilon of the batch norm operation.
1086
      state_prefix: a prefix string to identify states.
Dan Kondratyuk's avatar
Dan Kondratyuk committed
1087
1088
1089
1090
1091
1092
1093
      **kwargs: keyword arguments to be passed to this layer.
    """
    super(MovinetBlock, self).__init__(**kwargs)

    self._kernel_size = normalize_tuple(kernel_size, 3, 'kernel_size')
    self._strides = normalize_tuple(strides, 3, 'strides')

Dan Kondratyuk's avatar
Dan Kondratyuk committed
1094
1095
    # Use a multiplier of 2 if concatenating multiple features
    se_multiplier = 2 if se_type == '2plus3d' else 1
Dan Kondratyuk's avatar
Dan Kondratyuk committed
1096
    se_hidden_filters = nn_layers.make_divisible(
Dan Kondratyuk's avatar
Dan Kondratyuk committed
1097
        se_ratio * expand_filters * se_multiplier, divisor=8)
Dan Kondratyuk's avatar
Dan Kondratyuk committed
1098
1099
1100
1101
    self._out_filters = out_filters
    self._expand_filters = expand_filters
    self._causal = causal
    self._activation = activation
1102
    self._gating_activation = gating_activation
Dan Kondratyuk's avatar
Dan Kondratyuk committed
1103
1104
1105
1106
    self._se_ratio = se_ratio
    self._downsample = any(s > 1 for s in self._strides)
    self._stochastic_depth_drop_rate = stochastic_depth_drop_rate
    self._conv_type = conv_type
Dan Kondratyuk's avatar
Dan Kondratyuk committed
1107
    self._se_type = se_type
Dan Kondratyuk's avatar
Dan Kondratyuk committed
1108
1109
1110
1111
1112
1113
    self._use_positional_encoding = use_positional_encoding
    self._kernel_initializer = kernel_initializer
    self._kernel_regularizer = kernel_regularizer
    self._batch_norm_layer = batch_norm_layer
    self._batch_norm_momentum = batch_norm_momentum
    self._batch_norm_epsilon = batch_norm_epsilon
1114
    self._state_prefix = state_prefix
Dan Kondratyuk's avatar
Dan Kondratyuk committed
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141

    self._expansion = ConvBlock(
        expand_filters,
        (1, 1, 1),
        activation=activation,
        conv_type=conv_type,
        kernel_initializer=kernel_initializer,
        kernel_regularizer=kernel_regularizer,
        use_batch_norm=True,
        batch_norm_layer=self._batch_norm_layer,
        batch_norm_momentum=self._batch_norm_momentum,
        batch_norm_epsilon=self._batch_norm_epsilon,
        name='expansion')
    self._feature = StreamConvBlock(
        expand_filters,
        self._kernel_size,
        strides=self._strides,
        depthwise=True,
        causal=self._causal,
        activation=activation,
        conv_type=conv_type,
        kernel_initializer=kernel_initializer,
        kernel_regularizer=kernel_regularizer,
        use_batch_norm=True,
        batch_norm_layer=self._batch_norm_layer,
        batch_norm_momentum=self._batch_norm_momentum,
        batch_norm_epsilon=self._batch_norm_epsilon,
1142
        state_prefix=state_prefix,
Dan Kondratyuk's avatar
Dan Kondratyuk committed
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
        name='feature')
    self._projection = ConvBlock(
        out_filters,
        (1, 1, 1),
        activation=None,
        conv_type=conv_type,
        kernel_initializer=kernel_initializer,
        kernel_regularizer=kernel_regularizer,
        use_batch_norm=True,
        batch_norm_layer=self._batch_norm_layer,
        batch_norm_momentum=self._batch_norm_momentum,
        batch_norm_epsilon=self._batch_norm_epsilon,
        name='projection')
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
    self._attention = None
    if se_type != 'none':
      self._attention = StreamSqueezeExcitation(
          se_hidden_filters,
          se_type=se_type,
          activation=activation,
          gating_activation=gating_activation,
          causal=self._causal,
          conv_type=conv_type,
          use_positional_encoding=use_positional_encoding,
          kernel_initializer=kernel_initializer,
          kernel_regularizer=kernel_regularizer,
          state_prefix=state_prefix,
          name='se')
Dan Kondratyuk's avatar
Dan Kondratyuk committed
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179

  def get_config(self):
    """Returns a dictionary containing the config used for initialization."""
    config = {
        'out_filters': self._out_filters,
        'expand_filters': self._expand_filters,
        'kernel_size': self._kernel_size,
        'strides': self._strides,
        'causal': self._causal,
        'activation': self._activation,
1180
        'gating_activation': self._gating_activation,
Dan Kondratyuk's avatar
Dan Kondratyuk committed
1181
1182
1183
        'se_ratio': self._se_ratio,
        'stochastic_depth_drop_rate': self._stochastic_depth_drop_rate,
        'conv_type': self._conv_type,
Dan Kondratyuk's avatar
Dan Kondratyuk committed
1184
        'se_type': self._se_type,
Dan Kondratyuk's avatar
Dan Kondratyuk committed
1185
1186
1187
1188
1189
        'use_positional_encoding': self._use_positional_encoding,
        'kernel_initializer': self._kernel_initializer,
        'kernel_regularizer': self._kernel_regularizer,
        'batch_norm_momentum': self._batch_norm_momentum,
        'batch_norm_epsilon': self._batch_norm_epsilon,
1190
        'state_prefix': self._state_prefix,
Dan Kondratyuk's avatar
Dan Kondratyuk committed
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
    }
    base_config = super(MovinetBlock, self).get_config()
    return dict(list(base_config.items()) + list(config.items()))

  def build(self, input_shape):
    """Builds the layer with the given input shape."""
    if input_shape[-1] == self._out_filters and not self._downsample:
      self._skip = None
    else:
      self._skip = SkipBlock(
          self._out_filters,
          downsample=self._downsample,
          conv_type=self._conv_type,
          kernel_initializer=self._kernel_initializer,
          kernel_regularizer=self._kernel_regularizer,
          name='skip')

    self._mobile_bottleneck = MobileBottleneck(
        self._expansion,
        self._feature,
        self._projection,
        attention_layer=self._attention,
        skip_layer=self._skip,
        stochastic_depth_drop_rate=self._stochastic_depth_drop_rate,
        name='bneck')

    super(MovinetBlock, self).build(input_shape)

  def call(self,
           inputs: tf.Tensor,
           states: Optional[nn_layers.States] = None
           ) -> Tuple[tf.Tensor, nn_layers.States]:
    """Calls the layer with the given inputs.

    Args:
      inputs: the input tensor.
      states: a dict of states such that, if any of the keys match for this
          layer, will overwrite the contents of the buffer(s).

    Returns:
      the output tensor and states
    """
    states = dict(states) if states is not None else {}
    return self._mobile_bottleneck(inputs, states=states)


@tf.keras.utils.register_keras_serializable(package='Vision')
class Stem(tf.keras.layers.Layer):
  """Stem layer for video networks.

  Applies an initial convolution block operation.
  """

  def __init__(
      self,
      out_filters: int,
      kernel_size: Union[int, Sequence[int]],
      strides: Union[int, Sequence[int]] = (1, 1, 1),
      causal: bool = False,
      conv_type: str = '3d',
      activation: nn_layers.Activation = 'swish',
      kernel_initializer: tf.keras.initializers.Initializer = 'HeNormal',
1253
1254
      kernel_regularizer: Optional[tf.keras.regularizers.Regularizer] = tf.keras
      .regularizers.L2(KERNEL_WEIGHT_DECAY),
Dan Kondratyuk's avatar
Dan Kondratyuk committed
1255
1256
      batch_norm_layer: tf.keras.layers.Layer =
      tf.keras.layers.BatchNormalization,
Dan Kondratyuk's avatar
Dan Kondratyuk committed
1257
1258
      batch_norm_momentum: float = 0.99,
      batch_norm_epsilon: float = 1e-3,
Rebecca Chen's avatar
Rebecca Chen committed
1259
      state_prefix: Optional[str] = None,  # pytype: disable=annotation-type-mismatch  # typed-keras
Dan Kondratyuk's avatar
Dan Kondratyuk committed
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
      **kwargs):
    """Implementation for video model stem.

    Args:
      out_filters: number of output filters.
      kernel_size: kernel size of the convolution.
      strides: strides of the convolution.
      causal: if True, run the temporal convolutions in causal mode.
      conv_type: '3d', '2plus1d', or '3d_2plus1d'. '3d' uses the default 3D
          ops. '2plus1d' split any 3D ops into two sequential 2D ops with their
          own batch norm and activation. '3d_2plus1d' is like '2plus1d', but
          uses two sequential 3D ops instead.
      activation: the input activation name.
      kernel_initializer: kernel initializer for the conv operations.
      kernel_regularizer: kernel regularizer for the conv operations.
      batch_norm_layer: class to use for batch norm.
      batch_norm_momentum: momentum of the batch norm operation.
      batch_norm_epsilon: epsilon of the batch norm operation.
1278
      state_prefix: a prefix string to identify states.
Dan Kondratyuk's avatar
Dan Kondratyuk committed
1279
1280
1281
1282
      **kwargs: keyword arguments to be passed to this layer.
    """
    super(Stem, self).__init__(**kwargs)

1283
    self._out_filters = out_filters
Dan Kondratyuk's avatar
Dan Kondratyuk committed
1284
1285
1286
    self._kernel_size = normalize_tuple(kernel_size, 3, 'kernel_size')
    self._strides = normalize_tuple(strides, 3, 'strides')
    self._causal = causal
1287
1288
    self._conv_type = conv_type
    self._activation = activation
Dan Kondratyuk's avatar
Dan Kondratyuk committed
1289
1290
1291
1292
1293
    self._kernel_initializer = kernel_initializer
    self._kernel_regularizer = kernel_regularizer
    self._batch_norm_layer = batch_norm_layer
    self._batch_norm_momentum = batch_norm_momentum
    self._batch_norm_epsilon = batch_norm_epsilon
1294
    self._state_prefix = state_prefix
Dan Kondratyuk's avatar
Dan Kondratyuk committed
1295
1296
1297
1298
1299
1300

    self._stem = StreamConvBlock(
        filters=self._out_filters,
        kernel_size=self._kernel_size,
        strides=self._strides,
        causal=self._causal,
1301
        activation=self._activation,
Dan Kondratyuk's avatar
Dan Kondratyuk committed
1302
        conv_type=self._conv_type,
1303
1304
        kernel_initializer=self._kernel_initializer,
        kernel_regularizer=self._kernel_regularizer,
Dan Kondratyuk's avatar
Dan Kondratyuk committed
1305
1306
1307
1308
        use_batch_norm=True,
        batch_norm_layer=self._batch_norm_layer,
        batch_norm_momentum=self._batch_norm_momentum,
        batch_norm_epsilon=self._batch_norm_epsilon,
1309
        state_prefix=self._state_prefix,
Dan Kondratyuk's avatar
Dan Kondratyuk committed
1310
1311
1312
1313
1314
1315
1316
1317
1318
        name='stem')

  def get_config(self):
    """Returns a dictionary containing the config used for initialization."""
    config = {
        'out_filters': self._out_filters,
        'kernel_size': self._kernel_size,
        'strides': self._strides,
        'causal': self._causal,
1319
        'activation': self._activation,
Dan Kondratyuk's avatar
Dan Kondratyuk committed
1320
1321
1322
1323
1324
        'conv_type': self._conv_type,
        'kernel_initializer': self._kernel_initializer,
        'kernel_regularizer': self._kernel_regularizer,
        'batch_norm_momentum': self._batch_norm_momentum,
        'batch_norm_epsilon': self._batch_norm_epsilon,
1325
        'state_prefix': self._state_prefix,
Dan Kondratyuk's avatar
Dan Kondratyuk committed
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
    }
    base_config = super(Stem, self).get_config()
    return dict(list(base_config.items()) + list(config.items()))

  def call(self,
           inputs: tf.Tensor,
           states: Optional[nn_layers.States] = None
           ) -> Tuple[tf.Tensor, nn_layers.States]:
    """Calls the layer with the given inputs.

    Args:
      inputs: the input tensor.
      states: a dict of states such that, if any of the keys match for this
          layer, will overwrite the contents of the buffer(s).

    Returns:
      the output tensor and states
    """
    states = dict(states) if states is not None else {}
    return self._stem(inputs, states=states)


@tf.keras.utils.register_keras_serializable(package='Vision')
class Head(tf.keras.layers.Layer):
  """Head layer for video networks.

  Applies pointwise projection and global pooling.
  """

  def __init__(
      self,
      project_filters: int,
      conv_type: str = '3d',
      activation: nn_layers.Activation = 'swish',
      kernel_initializer: tf.keras.initializers.Initializer = 'HeNormal',
1361
1362
      kernel_regularizer: Optional[tf.keras.regularizers.Regularizer] = tf.keras
      .regularizers.L2(KERNEL_WEIGHT_DECAY),
Dan Kondratyuk's avatar
Dan Kondratyuk committed
1363
1364
      batch_norm_layer: tf.keras.layers.Layer =
      tf.keras.layers.BatchNormalization,
Dan Kondratyuk's avatar
Dan Kondratyuk committed
1365
1366
      batch_norm_momentum: float = 0.99,
      batch_norm_epsilon: float = 1e-3,
1367
      average_pooling_type: str = '3d',
Rebecca Chen's avatar
Rebecca Chen committed
1368
      state_prefix: Optional[str] = None,  # pytype: disable=annotation-type-mismatch  # typed-keras
Dan Kondratyuk's avatar
Dan Kondratyuk committed
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
      **kwargs):
    """Implementation for video model head.

    Args:
      project_filters: number of pointwise projection filters.
      conv_type: '3d', '2plus1d', or '3d_2plus1d'. '3d' uses the default 3D
          ops. '2plus1d' split any 3D ops into two sequential 2D ops with their
          own batch norm and activation. '3d_2plus1d' is like '2plus1d', but
          uses two sequential 3D ops instead.
      activation: the input activation name.
      kernel_initializer: kernel initializer for the conv operations.
      kernel_regularizer: kernel regularizer for the conv operations.
      batch_norm_layer: class to use for batch norm.
      batch_norm_momentum: momentum of the batch norm operation.
      batch_norm_epsilon: epsilon of the batch norm operation.
1384
1385
      average_pooling_type: The average pooling type. Currently supporting
        ['3d', '2d', 'none'].
1386
      state_prefix: a prefix string to identify states.
Dan Kondratyuk's avatar
Dan Kondratyuk committed
1387
1388
1389
1390
1391
1392
      **kwargs: keyword arguments to be passed to this layer.
    """
    super(Head, self).__init__(**kwargs)

    self._project_filters = project_filters
    self._conv_type = conv_type
1393
    self._activation = activation
Dan Kondratyuk's avatar
Dan Kondratyuk committed
1394
1395
1396
1397
1398
    self._kernel_initializer = kernel_initializer
    self._kernel_regularizer = kernel_regularizer
    self._batch_norm_layer = batch_norm_layer
    self._batch_norm_momentum = batch_norm_momentum
    self._batch_norm_epsilon = batch_norm_epsilon
1399
    self._state_prefix = state_prefix
Dan Kondratyuk's avatar
Dan Kondratyuk committed
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411

    self._project = ConvBlock(
        filters=project_filters,
        kernel_size=1,
        activation=activation,
        conv_type=conv_type,
        kernel_regularizer=kernel_regularizer,
        use_batch_norm=True,
        batch_norm_layer=self._batch_norm_layer,
        batch_norm_momentum=self._batch_norm_momentum,
        batch_norm_epsilon=self._batch_norm_epsilon,
        name='project')
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
    if average_pooling_type.lower() == '3d':
      self._pool = nn_layers.GlobalAveragePool3D(
          keepdims=True, causal=False, state_prefix=state_prefix)
    elif average_pooling_type.lower() == '2d':
      self._pool = nn_layers.SpatialAveragePool3D(keepdims=True)
    elif average_pooling_type == 'none':
      self._pool = None
    else:
      raise ValueError(
          '%s average_pooling_type is not supported.' % average_pooling_type)
Dan Kondratyuk's avatar
Dan Kondratyuk committed
1422
1423
1424
1425
1426
1427

  def get_config(self):
    """Returns a dictionary containing the config used for initialization."""
    config = {
        'project_filters': self._project_filters,
        'conv_type': self._conv_type,
1428
        'activation': self._activation,
Dan Kondratyuk's avatar
Dan Kondratyuk committed
1429
1430
1431
1432
        'kernel_initializer': self._kernel_initializer,
        'kernel_regularizer': self._kernel_regularizer,
        'batch_norm_momentum': self._batch_norm_momentum,
        'batch_norm_epsilon': self._batch_norm_epsilon,
1433
        'state_prefix': self._state_prefix,
Dan Kondratyuk's avatar
Dan Kondratyuk committed
1434
1435
1436
1437
    }
    base_config = super(Head, self).get_config()
    return dict(list(base_config.items()) + list(config.items()))

1438
1439
1440
1441
1442
  def call(
      self,
      inputs: Union[tf.Tensor, Mapping[str, tf.Tensor]],
      states: Optional[nn_layers.States] = None,
  ) -> Tuple[tf.Tensor, nn_layers.States]:
Dan Kondratyuk's avatar
Dan Kondratyuk committed
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
    """Calls the layer with the given inputs.

    Args:
      inputs: the input tensor or dict of endpoints.
      states: a dict of states such that, if any of the keys match for this
          layer, will overwrite the contents of the buffer(s).

    Returns:
      the output tensor and states
    """
    states = dict(states) if states is not None else {}
    x = self._project(inputs)
1455
1456
1457
1458
1459
    if self._pool is not None:
      outputs = self._pool(x, states=states, output_states=True)
    else:
      outputs = x
    return outputs
Dan Kondratyuk's avatar
Dan Kondratyuk committed
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480


@tf.keras.utils.register_keras_serializable(package='Vision')
class ClassifierHead(tf.keras.layers.Layer):
  """Head layer for video networks.

  Applies dense projection, dropout, and classifier projection. Expects input
  to be pooled vector with shape [batch_size, 1, 1, 1, num_channels]
  """

  def __init__(
      self,
      head_filters: int,
      num_classes: int,
      dropout_rate: float = 0.,
      conv_type: str = '3d',
      activation: nn_layers.Activation = 'swish',
      output_activation: Optional[nn_layers.Activation] = None,
      max_pool_predictions: bool = False,
      kernel_initializer: tf.keras.initializers.Initializer = 'HeNormal',
      kernel_regularizer: Optional[tf.keras.regularizers.Regularizer] =
Rebecca Chen's avatar
Rebecca Chen committed
1481
      tf.keras.regularizers.L2(KERNEL_WEIGHT_DECAY),  # pytype: disable=annotation-type-mismatch  # typed-keras
Dan Kondratyuk's avatar
Dan Kondratyuk committed
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
      **kwargs):
    """Implementation for video model classifier head.

    Args:
      head_filters: number of dense head projection filters.
      num_classes: number of output classes for the final logits.
      dropout_rate: the dropout rate applied to the head projection.
      conv_type: '3d', '2plus1d', or '3d_2plus1d'. '3d' uses the default 3D
          ops. '2plus1d' split any 3D ops into two sequential 2D ops with their
          own batch norm and activation. '3d_2plus1d' is like '2plus1d', but
          uses two sequential 3D ops instead.
      activation: the input activation name.
      output_activation: optional final activation (e.g., 'softmax').
      max_pool_predictions: apply temporal softmax pooling to predictions.
          Intended for multi-label prediction, where multiple labels are
          distributed across the video. Currently only supports single clips.
      kernel_initializer: kernel initializer for the conv operations.
      kernel_regularizer: kernel regularizer for the conv operations.
      **kwargs: keyword arguments to be passed to this layer.
    """
    super(ClassifierHead, self).__init__(**kwargs)

    self._head_filters = head_filters
    self._num_classes = num_classes
    self._dropout_rate = dropout_rate
    self._conv_type = conv_type
Dan Kondratyuk's avatar
Dan Kondratyuk committed
1508
    self._activation = activation
Dan Kondratyuk's avatar
Dan Kondratyuk committed
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
    self._output_activation = output_activation
    self._max_pool_predictions = max_pool_predictions
    self._kernel_initializer = kernel_initializer
    self._kernel_regularizer = kernel_regularizer

    self._dropout = tf.keras.layers.Dropout(dropout_rate)
    self._head = ConvBlock(
        filters=head_filters,
        kernel_size=1,
        activation=activation,
        use_bias=True,
        use_batch_norm=False,
        conv_type=conv_type,
        kernel_initializer=kernel_initializer,
        kernel_regularizer=kernel_regularizer,
        name='head')
    self._classifier = ConvBlock(
        filters=num_classes,
        kernel_size=1,
        kernel_initializer=tf.keras.initializers.random_normal(stddev=0.01),
        kernel_regularizer=None,
        use_bias=True,
        use_batch_norm=False,
        conv_type=conv_type,
        name='classifier')
    self._max_pool = nn_layers.TemporalSoftmaxPool()
    self._squeeze = Squeeze3D()

    output_activation = output_activation if output_activation else 'linear'
    self._cast = tf.keras.layers.Activation(
        output_activation, dtype='float32', name='cast')

  def get_config(self):
    """Returns a dictionary containing the config used for initialization."""
    config = {
        'head_filters': self._head_filters,
        'num_classes': self._num_classes,
        'dropout_rate': self._dropout_rate,
        'conv_type': self._conv_type,
Dan Kondratyuk's avatar
Dan Kondratyuk committed
1548
        'activation': self._activation,
Dan Kondratyuk's avatar
Dan Kondratyuk committed
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
        'output_activation': self._output_activation,
        'max_pool_predictions': self._max_pool_predictions,
        'kernel_initializer': self._kernel_initializer,
        'kernel_regularizer': self._kernel_regularizer,
    }
    base_config = super(ClassifierHead, self).get_config()
    return dict(list(base_config.items()) + list(config.items()))

  def call(self, inputs: tf.Tensor) -> tf.Tensor:
    """Calls the layer with the given inputs."""
    # Input Shape: [batch_size, 1, 1, 1, input_channels]
    x = inputs

    x = self._head(x)

    if self._dropout_rate and self._dropout_rate > 0:
      x = self._dropout(x)

    x = self._classifier(x)

    if self._max_pool_predictions:
      x = self._max_pool(x)

    x = self._squeeze(x)
    x = self._cast(x)

    return x