resnet_v1.py 15.1 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
# Copyright 2016 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Contains definitions for the original form of Residual Networks.

The 'v1' residual networks (ResNets) implemented in this module were proposed
by:
[1] Kaiming He, Xiangyu Zhang, Shaoqing Ren, Jian Sun
    Deep Residual Learning for Image Recognition. arXiv:1512.03385

Other variants were introduced in:
[2] Kaiming He, Xiangyu Zhang, Shaoqing Ren, Jian Sun
    Identity Mappings in Deep Residual Networks. arXiv: 1603.05027

The networks defined in this module utilize the bottleneck building block of
[1] with projection shortcuts only for increasing depths. They employ batch
normalization *after* every weight layer. This is the architecture used by
MSRA in the Imagenet and MSCOCO 2016 competition models ResNet-101 and
ResNet-152. See [2; Fig. 1a] for a comparison between the current 'v1'
architecture and the alternative 'v2' architecture of [2] which uses batch
normalization *before* every weight layer in the so-called full pre-activation
units.

Typical use:

   from tensorflow.contrib.slim.nets import resnet_v1

ResNet-101 for image classification into 1000 classes:

   # inputs has shape [batch, 224, 224, 3]
   with slim.arg_scope(resnet_v1.resnet_arg_scope()):
      net, end_points = resnet_v1.resnet_v1_101(inputs, 1000, is_training=False)

ResNet-101 for semantic segmentation into 21 classes:

   # inputs has shape [batch, 513, 513, 3]
   with slim.arg_scope(resnet_v1.resnet_arg_scope()):
      net, end_points = resnet_v1.resnet_v1_101(inputs,
                                                21,
                                                is_training=False,
                                                global_pool=False,
                                                output_stride=16)
"""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import tensorflow as tf

from nets import resnet_utils


resnet_arg_scope = resnet_utils.resnet_arg_scope
slim = tf.contrib.slim


@slim.add_arg_scope
Derek Chow's avatar
Derek Chow committed
69
70
71
72
73
74
75
76
def bottleneck(inputs,
               depth,
               depth_bottleneck,
               stride,
               rate=1,
               outputs_collections=None,
               scope=None,
               use_bounded_activations=False):
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
  """Bottleneck residual unit variant with BN after convolutions.

  This is the original residual unit proposed in [1]. See Fig. 1(a) of [2] for
  its definition. Note that we use here the bottleneck variant which has an
  extra bottleneck layer.

  When putting together two consecutive ResNet blocks that use this unit, one
  should use stride = 2 in the last unit of the first block.

  Args:
    inputs: A tensor of size [batch, height, width, channels].
    depth: The depth of the ResNet unit output.
    depth_bottleneck: The depth of the bottleneck layers.
    stride: The ResNet unit's stride. Determines the amount of downsampling of
      the units output compared to its input.
    rate: An integer, rate for atrous convolution.
    outputs_collections: Collection to add the ResNet unit output.
    scope: Optional variable_scope.
Derek Chow's avatar
Derek Chow committed
95
96
    use_bounded_activations: Whether or not to use bounded activations. Bounded
      activations better lend themselves to quantized inference.
97
98
99
100
101
102
103
104
105

  Returns:
    The ResNet unit's output.
  """
  with tf.variable_scope(scope, 'bottleneck_v1', [inputs]) as sc:
    depth_in = slim.utils.last_dimension(inputs.get_shape(), min_rank=4)
    if depth == depth_in:
      shortcut = resnet_utils.subsample(inputs, stride, 'shortcut')
    else:
Derek Chow's avatar
Derek Chow committed
106
107
108
109
110
111
      shortcut = slim.conv2d(
          inputs,
          depth, [1, 1],
          stride=stride,
          activation_fn=tf.nn.relu6 if use_bounded_activations else None,
          scope='shortcut')
112
113
114
115
116
117
118
119

    residual = slim.conv2d(inputs, depth_bottleneck, [1, 1], stride=1,
                           scope='conv1')
    residual = resnet_utils.conv2d_same(residual, depth_bottleneck, 3, stride,
                                        rate=rate, scope='conv2')
    residual = slim.conv2d(residual, depth, [1, 1], stride=1,
                           activation_fn=None, scope='conv3')

Derek Chow's avatar
Derek Chow committed
120
121
122
123
124
125
    if use_bounded_activations:
      # Use clip_by_value to simulate bandpass activation.
      residual = tf.clip_by_value(residual, -6.0, 6.0)
      output = tf.nn.relu6(shortcut + residual)
    else:
      output = tf.nn.relu(shortcut + residual)
126
127

    return slim.utils.collect_named_outputs(outputs_collections,
128
                                            sc.name,
129
130
131
132
133
134
135
136
137
138
                                            output)


def resnet_v1(inputs,
              blocks,
              num_classes=None,
              is_training=True,
              global_pool=True,
              output_stride=None,
              include_root_block=True,
Derek Chow's avatar
Derek Chow committed
139
              spatial_squeeze=True,
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
              reuse=None,
              scope=None):
  """Generator for v1 ResNet models.

  This function generates a family of ResNet v1 models. See the resnet_v1_*()
  methods for specific model instantiations, obtained by selecting different
  block instantiations that produce ResNets of various depths.

  Training for image classification on Imagenet is usually done with [224, 224]
  inputs, resulting in [7, 7] feature maps at the output of the last ResNet
  block for the ResNets defined in [1] that have nominal stride equal to 32.
  However, for dense prediction tasks we advise that one uses inputs with
  spatial dimensions that are multiples of 32 plus 1, e.g., [321, 321]. In
  this case the feature maps at the ResNet output will have spatial shape
  [(height - 1) / output_stride + 1, (width - 1) / output_stride + 1]
  and corners exactly aligned with the input image corners, which greatly
  facilitates alignment of the features to the image. Using as input [225, 225]
  images results in [8, 8] feature maps at the output of the last ResNet block.

  For dense prediction tasks, the ResNet needs to run in fully-convolutional
  (FCN) mode and global_pool needs to be set to False. The ResNets in [1, 2] all
  have nominal stride equal to 32 and a good choice in FCN mode is to use
  output_stride=16 in order to increase the density of the computed features at
  small computational and memory overhead, cf. http://arxiv.org/abs/1606.00915.

  Args:
    inputs: A tensor of size [batch, height_in, width_in, channels].
    blocks: A list of length equal to the number of ResNet blocks. Each element
      is a resnet_utils.Block object describing the units in the block.
169
170
171
    num_classes: Number of predicted classes for classification tasks.
      If 0 or None, we return the features before the logit layer.
    is_training: whether batch_norm layers are in training mode.
172
173
174
175
176
177
178
    global_pool: If True, we perform global average pooling before computing the
      logits. Set to True for image classification, False for dense prediction.
    output_stride: If None, then the output will be computed at the nominal
      network stride. If output_stride is not None, it specifies the requested
      ratio of input to output spatial resolution.
    include_root_block: If True, include the initial convolution followed by
      max-pooling, if False excludes it.
Neal Wu's avatar
Neal Wu committed
179
    spatial_squeeze: if True, logits is of shape [B, C], if false logits is
180
        of shape [B, 1, 1, C], where B is batch_size and C is number of classes.
181
182
183
        To use this parameter, the input images must be smaller than 300x300
        pixels, in which case the output logit layer does not contain spatial
        information and can be removed.
184
185
186
187
188
189
190
191
    reuse: whether or not the network and its variables should be reused. To be
      able to reuse 'scope' must be given.
    scope: Optional variable_scope.

  Returns:
    net: A rank-4 tensor of size [batch, height_out, width_out, channels_out].
      If global_pool is False, then height_out and width_out are reduced by a
      factor of output_stride compared to the respective height_in and width_in,
192
193
194
195
      else both height_out and width_out equal one. If num_classes is 0 or None,
      then net is the output of the last ResNet block, potentially after global
      average pooling. If num_classes a non-zero integer, net contains the
      pre-softmax activations.
196
197
198
199
200
201
202
    end_points: A dictionary from components of the network to the corresponding
      activation.

  Raises:
    ValueError: If the target output_stride is not valid.
  """
  with tf.variable_scope(scope, 'resnet_v1', [inputs], reuse=reuse) as sc:
203
    end_points_collection = sc.original_name_scope + '_end_points'
204
205
206
207
208
209
210
211
212
213
214
215
216
    with slim.arg_scope([slim.conv2d, bottleneck,
                         resnet_utils.stack_blocks_dense],
                        outputs_collections=end_points_collection):
      with slim.arg_scope([slim.batch_norm], is_training=is_training):
        net = inputs
        if include_root_block:
          if output_stride is not None:
            if output_stride % 4 != 0:
              raise ValueError('The output_stride needs to be a multiple of 4.')
            output_stride /= 4
          net = resnet_utils.conv2d_same(net, 64, 7, stride=2, scope='conv1')
          net = slim.max_pool2d(net, [3, 3], stride=2, scope='pool1')
        net = resnet_utils.stack_blocks_dense(net, blocks, output_stride)
217
218
219
220
        # Convert end_points_collection into a dictionary of end_points.
        end_points = slim.utils.convert_collection_to_dict(
            end_points_collection)

221
222
223
        if global_pool:
          # Global average pooling.
          net = tf.reduce_mean(net, [1, 2], name='pool5', keep_dims=True)
224
225
          end_points['global_pool'] = net
        if num_classes:
226
227
          net = slim.conv2d(net, num_classes, [1, 1], activation_fn=None,
                            normalizer_fn=None, scope='logits')
228
          end_points[sc.name + '/logits'] = net
229
230
          if spatial_squeeze:
            net = tf.squeeze(net, [1, 2], name='SpatialSqueeze')
231
            end_points[sc.name + '/spatial_squeeze'] = net
232
233
          end_points['predictions'] = slim.softmax(net, scope='predictions')
        return net, end_points
234
235
236
resnet_v1.default_image_size = 224


derekjchow's avatar
derekjchow committed
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
def resnet_v1_block(scope, base_depth, num_units, stride):
  """Helper function for creating a resnet_v1 bottleneck block.

  Args:
    scope: The scope of the block.
    base_depth: The depth of the bottleneck layer for each unit.
    num_units: The number of units in the block.
    stride: The stride of the block, implemented as a stride in the last unit.
      All other units have stride=1.

  Returns:
    A resnet_v1 bottleneck block.
  """
  return resnet_utils.Block(scope, bottleneck, [{
      'depth': base_depth * 4,
      'depth_bottleneck': base_depth,
      'stride': 1
  }] * (num_units - 1) + [{
      'depth': base_depth * 4,
      'depth_bottleneck': base_depth,
      'stride': stride
  }])


261
262
263
264
265
def resnet_v1_50(inputs,
                 num_classes=None,
                 is_training=True,
                 global_pool=True,
                 output_stride=None,
266
                 spatial_squeeze=True,
267
268
269
270
                 reuse=None,
                 scope='resnet_v1_50'):
  """ResNet-50 model of [1]. See resnet_v1() for arg and return description."""
  blocks = [
derekjchow's avatar
derekjchow committed
271
272
273
274
      resnet_v1_block('block1', base_depth=64, num_units=3, stride=2),
      resnet_v1_block('block2', base_depth=128, num_units=4, stride=2),
      resnet_v1_block('block3', base_depth=256, num_units=6, stride=2),
      resnet_v1_block('block4', base_depth=512, num_units=3, stride=1),
275
276
277
  ]
  return resnet_v1(inputs, blocks, num_classes, is_training,
                   global_pool=global_pool, output_stride=output_stride,
278
279
                   include_root_block=True, spatial_squeeze=spatial_squeeze,
                   reuse=reuse, scope=scope)
amirbar's avatar
amirbar committed
280
resnet_v1_50.default_image_size = resnet_v1.default_image_size
281
282
283
284
285
286
287


def resnet_v1_101(inputs,
                  num_classes=None,
                  is_training=True,
                  global_pool=True,
                  output_stride=None,
288
                  spatial_squeeze=True,
289
290
291
292
                  reuse=None,
                  scope='resnet_v1_101'):
  """ResNet-101 model of [1]. See resnet_v1() for arg and return description."""
  blocks = [
derekjchow's avatar
derekjchow committed
293
294
295
296
      resnet_v1_block('block1', base_depth=64, num_units=3, stride=2),
      resnet_v1_block('block2', base_depth=128, num_units=4, stride=2),
      resnet_v1_block('block3', base_depth=256, num_units=23, stride=2),
      resnet_v1_block('block4', base_depth=512, num_units=3, stride=1),
297
298
299
  ]
  return resnet_v1(inputs, blocks, num_classes, is_training,
                   global_pool=global_pool, output_stride=output_stride,
300
301
                   include_root_block=True, spatial_squeeze=spatial_squeeze,
                   reuse=reuse, scope=scope)
amirbar's avatar
amirbar committed
302
resnet_v1_101.default_image_size = resnet_v1.default_image_size
303
304
305
306
307
308
309


def resnet_v1_152(inputs,
                  num_classes=None,
                  is_training=True,
                  global_pool=True,
                  output_stride=None,
310
                  spatial_squeeze=True,
311
312
313
314
                  reuse=None,
                  scope='resnet_v1_152'):
  """ResNet-152 model of [1]. See resnet_v1() for arg and return description."""
  blocks = [
derekjchow's avatar
derekjchow committed
315
316
317
318
319
      resnet_v1_block('block1', base_depth=64, num_units=3, stride=2),
      resnet_v1_block('block2', base_depth=128, num_units=8, stride=2),
      resnet_v1_block('block3', base_depth=256, num_units=36, stride=2),
      resnet_v1_block('block4', base_depth=512, num_units=3, stride=1),
  ]
320
321
  return resnet_v1(inputs, blocks, num_classes, is_training,
                   global_pool=global_pool, output_stride=output_stride,
322
323
                   include_root_block=True, spatial_squeeze=spatial_squeeze,
                   reuse=reuse, scope=scope)
amirbar's avatar
amirbar committed
324
resnet_v1_152.default_image_size = resnet_v1.default_image_size
325
326
327
328
329
330
331


def resnet_v1_200(inputs,
                  num_classes=None,
                  is_training=True,
                  global_pool=True,
                  output_stride=None,
332
                  spatial_squeeze=True,
333
334
335
336
                  reuse=None,
                  scope='resnet_v1_200'):
  """ResNet-200 model of [2]. See resnet_v1() for arg and return description."""
  blocks = [
derekjchow's avatar
derekjchow committed
337
338
339
340
341
      resnet_v1_block('block1', base_depth=64, num_units=3, stride=2),
      resnet_v1_block('block2', base_depth=128, num_units=24, stride=2),
      resnet_v1_block('block3', base_depth=256, num_units=36, stride=2),
      resnet_v1_block('block4', base_depth=512, num_units=3, stride=1),
  ]
342
343
  return resnet_v1(inputs, blocks, num_classes, is_training,
                   global_pool=global_pool, output_stride=output_stride,
344
345
                   include_root_block=True, spatial_squeeze=spatial_squeeze,
                   reuse=reuse, scope=scope)
Neal Wu's avatar
Neal Wu committed
346
resnet_v1_200.default_image_size = resnet_v1.default_image_size