detr_input.py 6.89 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
# Copyright 2022 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

"""COCO data loader for DETR."""

from typing import Optional, Tuple
import tensorflow as tf

from official.vision.dataloaders import parser
from official.vision.dataloaders import utils

from official.vision.ops import box_ops
from official.vision.ops import preprocess_ops
from official.core import input_reader

RESIZE_SCALES = (
      480, 512, 544, 576, 608, 640, 672, 704, 736, 768, 800)

class Parser(parser.Parser):
  """Parse an image and its annotations into a dictionary of tensors."""

  def __init__(self,
               class_offset: int = 0,
               output_size: Tuple[int, int] = (1333, 1333),
               max_num_boxes: int = 100,
               resize_scales: Tuple[int, ...] = RESIZE_SCALES,
               aug_rand_hflip=True):
    self._class_offset = class_offset
    self._output_size = output_size
    self._max_num_boxes = max_num_boxes
    self._resize_scales = resize_scales
    self._aug_rand_hflip = aug_rand_hflip
              
  def _parse_train_data(self, data):
    """Parses data for training and evaluation."""
    classes = data['groundtruth_classes'] + self._class_offset
    boxes = data['groundtruth_boxes']
    is_crowd = data['groundtruth_is_crowd']

    # Gets original image.
    image = data['image']

    # Normalizes image with mean and std pixel values.
    image = preprocess_ops.normalize_image(image)
    image, boxes, _ = preprocess_ops.random_horizontal_flip(image, boxes)

    do_crop = tf.greater(tf.random.uniform([]), 0.5)
    if do_crop:
      # Rescale
      boxes = box_ops.denormalize_boxes(boxes, tf.shape(image)[:2])
      index = tf.random.categorical(tf.zeros([1, 3]), 1)[0]
      scales = tf.gather([400.0, 500.0, 600.0], index, axis=0)
      short_side = scales[0]
      image, image_info = preprocess_ops.resize_image(image, short_side)
      boxes = preprocess_ops.resize_and_crop_boxes(boxes,
                                                    image_info[2, :],
                                                    image_info[1, :],
                                                    image_info[3, :])
      boxes = box_ops.normalize_boxes(boxes, image_info[1, :])

      # Do croping
      shape = tf.cast(image_info[1], dtype=tf.int32)
      h = tf.random.uniform(
          [], 384, tf.math.minimum(shape[0], 600), dtype=tf.int32)
      w = tf.random.uniform(
          [], 384, tf.math.minimum(shape[1], 600), dtype=tf.int32)
      i = tf.random.uniform([], 0, shape[0] - h + 1, dtype=tf.int32)
      j = tf.random.uniform([], 0, shape[1] - w + 1, dtype=tf.int32)
      image = tf.image.crop_to_bounding_box(image, i, j, h, w)
      boxes = tf.clip_by_value(
          (boxes[..., :] * tf.cast(
              tf.stack([shape[0], shape[1], shape[0], shape[1]]),
              dtype=tf.float32) -
            tf.cast(tf.stack([i, j, i, j]), dtype=tf.float32)) /
          tf.cast(tf.stack([h, w, h, w]), dtype=tf.float32), 0.0, 1.0)
    scales = tf.constant(
        self._resize_scales,
        dtype=tf.float32)
    index = tf.random.categorical(tf.zeros([1, 11]), 1)[0]
    scales = tf.gather(scales, index, axis=0)

    image_shape = tf.shape(image)[:2]
    boxes = box_ops.denormalize_boxes(boxes, image_shape)
    gt_boxes = boxes
    short_side = scales[0]
    image, image_info = preprocess_ops.resize_image(
        image,
        short_side,
        max(self._output_size))
    boxes = preprocess_ops.resize_and_crop_boxes(boxes,
                                                 image_info[2, :],
                                                 image_info[1, :],
                                                 image_info[3, :])
    boxes = box_ops.normalize_boxes(boxes, image_info[1, :])

    # Filters out ground truth boxes that are all zeros.
    indices = box_ops.get_non_empty_box_indices(boxes)
    boxes = tf.gather(boxes, indices)
    classes = tf.gather(classes, indices)
    is_crowd = tf.gather(is_crowd, indices)
    boxes = box_ops.yxyx_to_cycxhw(boxes)

    image = tf.image.pad_to_bounding_box(
        image, 0, 0, self._output_size[0], self._output_size[1])
    labels = {
        'classes':
            preprocess_ops.clip_or_pad_to_fixed_size(
                classes, self._max_num_boxes),
        'boxes':
            preprocess_ops.clip_or_pad_to_fixed_size(
                boxes, self._max_num_boxes)
    }

    return image, labels

  def _parse_eval_data(self, data):
    """Parses data for training and evaluation."""
    groundtruths = {}
    classes = data['groundtruth_classes']
    boxes = data['groundtruth_boxes']
    is_crowd = data['groundtruth_is_crowd']

    # Gets original image and its size.
    image = data['image']

    # Normalizes image with mean and std pixel values.
    image = preprocess_ops.normalize_image(image)

    scales = tf.constant([self._resize_scales[-1]], tf.float32)

    image_shape = tf.shape(image)[:2]
    boxes = box_ops.denormalize_boxes(boxes, image_shape)
    gt_boxes = boxes
    short_side = scales[0]
    image, image_info = preprocess_ops.resize_image(
        image,
        short_side,
        max(self._output_size))
    boxes = preprocess_ops.resize_and_crop_boxes(boxes,
                                                 image_info[2, :],
                                                 image_info[1, :],
                                                 image_info[3, :])
    boxes = box_ops.normalize_boxes(boxes, image_info[1, :])

    # Filters out ground truth boxes that are all zeros.
    indices = box_ops.get_non_empty_box_indices(boxes)
    boxes = tf.gather(boxes, indices)
    classes = tf.gather(classes, indices)
    is_crowd = tf.gather(is_crowd, indices)
    boxes = box_ops.yxyx_to_cycxhw(boxes)

    image = tf.image.pad_to_bounding_box(
        image, 0, 0, self._output_size[0], self._output_size[1])
    labels = {
        'classes':
            preprocess_ops.clip_or_pad_to_fixed_size(
                classes, self._max_num_boxes),
        'boxes':
            preprocess_ops.clip_or_pad_to_fixed_size(
                boxes, self._max_num_boxes)
    }
    labels.update({
        'id':
            int(data['source_id']),
        'image_info':
            image_info,
        'is_crowd':
            preprocess_ops.clip_or_pad_to_fixed_size(
                is_crowd, self._max_num_boxes),
        'gt_boxes':
            preprocess_ops.clip_or_pad_to_fixed_size(
                gt_boxes, self._max_num_boxes),
    })

    return image, labels