train.py 6.72 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
# Copyright 2017 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Trains a StarGAN model."""

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import io
import os

from absl import flags
import numpy as np
import scipy.misc
import tensorflow as tf

import network
import data_provider

# FLAGS for data.
flags.DEFINE_multi_string(
    'image_file_patterns', None,
    'List of file pattern for different domain of images. '
    '(e.g.[\'black_hair\', \'blond_hair\', \'brown_hair\']')
flags.DEFINE_integer('batch_size', 6, 'The number of images in each batch.')
flags.DEFINE_integer('patch_size', 128, 'The patch size of images.')

# Write-to-disk flags.
flags.DEFINE_string('output_dir', '/tmp/stargan/out/',
                    'Directory where to write summary image.')

# FLAGS for training hyper-parameters.
flags.DEFINE_float('generator_lr', 1e-4, 'The generator learning rate.')
flags.DEFINE_float('discriminator_lr', 1e-4, 'The discriminator learning rate.')
flags.DEFINE_integer('max_number_of_steps', 1000000,
                     'The maximum number of gradient steps.')
flags.DEFINE_integer('steps_per_eval', 1000,
                     'The number of steps after which we write eval to disk.')
flags.DEFINE_float('adam_beta1', 0.5, 'Adam Beta 1 for the Adam optimizer.')
flags.DEFINE_float('adam_beta2', 0.999, 'Adam Beta 2 for the Adam optimizer.')
flags.DEFINE_float('gen_disc_step_ratio', 0.2,
                   'Generator:Discriminator training step ratio.')

# FLAGS for distributed training.
flags.DEFINE_string('master', '', 'Name of the TensorFlow master to use.')
flags.DEFINE_integer(
    'ps_tasks', 0,
    'The number of parameter servers. If the value is 0, then the parameters '
    'are handled locally by the worker.')
flags.DEFINE_integer(
    'task', 0,
    'The Task ID. This value is used when training with multiple workers to '
    'identify each worker.')

FLAGS = flags.FLAGS
tfgan = tf.contrib.gan


def _get_optimizer(gen_lr, dis_lr):
  """Returns generator optimizer and discriminator optimizer.

  Args:
    gen_lr: A scalar float `Tensor` or a Python number.  The Generator learning
        rate.
    dis_lr: A scalar float `Tensor` or a Python number.  The Discriminator
        learning rate.

  Returns:
    A tuple of generator optimizer and discriminator optimizer.
  """
  gen_opt = tf.train.AdamOptimizer(
      gen_lr, beta1=FLAGS.adam_beta1, beta2=FLAGS.adam_beta2, use_locking=True)
  dis_opt = tf.train.AdamOptimizer(
      dis_lr, beta1=FLAGS.adam_beta1, beta2=FLAGS.adam_beta2, use_locking=True)
  return gen_opt, dis_opt


def _define_train_step():
  """Get the training step for generator and discriminator for each GAN step.

  Returns:
    GANTrainSteps namedtuple representing the training step configuration.
  """

  if FLAGS.gen_disc_step_ratio <= 1:
    discriminator_step = int(1 / FLAGS.gen_disc_step_ratio)
    return tfgan.GANTrainSteps(1, discriminator_step)
  else:
    generator_step = int(FLAGS.gen_disc_step_ratio)
    return tfgan.GANTrainSteps(generator_step, 1)


def _get_summary_image(estimator, test_images_np):
  """Returns a numpy image of the generate on the test images."""
  num_domains = len(test_images_np)

  img_rows = []
  for img_np in test_images_np:
    def test_input_fn():
      dataset_imgs = [img_np] * num_domains  # pylint:disable=cell-var-from-loop
      dataset_lbls = [tf.one_hot([d], num_domains) for d in xrange(num_domains)]

      # Make into a dataset.
      dataset_imgs = np.stack(dataset_imgs)
      dataset_imgs = np.expand_dims(dataset_imgs, 1)
      dataset_lbls = tf.stack(dataset_lbls)
      unused_tensor = tf.zeros(num_domains)
      return tf.data.Dataset.from_tensor_slices(
          ((dataset_imgs, dataset_lbls), unused_tensor))

    prediction_iterable = estimator.predict(test_input_fn)
    predictions = [prediction_iterable.next() for _ in xrange(num_domains)]
    transform_row = np.concatenate([img_np] + predictions, 1)
    img_rows.append(transform_row)

  all_rows = np.concatenate(img_rows, 0)
  # Normalize` [-1, 1] to [0, 1].
  normalized_summary = (all_rows + 1.0) / 2.0
  return normalized_summary


def _write_to_disk(summary_image, filename):
  """Write to disk."""
  buf = io.BytesIO()
  scipy.misc.imsave(buf, summary_image, format='png')
  buf.seek(0)
  with tf.gfile.GFile(filename, 'w') as f:
    f.write(buf.getvalue())


def main(_, override_generator_fn=None, override_discriminator_fn=None):
  # Create directories if not exist.
  if not tf.gfile.Exists(FLAGS.output_dir):
    tf.gfile.MakeDirs(FLAGS.output_dir)

  # Make sure steps integers are consistent.
  if FLAGS.max_number_of_steps % FLAGS.steps_per_eval != 0:
    raise ValueError('`max_number_of_steps` must be divisible by '
                     '`steps_per_eval`.')

  # Create optimizers.
  gen_opt, dis_opt = _get_optimizer(FLAGS.generator_lr, FLAGS.discriminator_lr)

  # Create estimator.
  # (joelshor): Add optional distribution strategy here.
  stargan_estimator = tfgan.estimator.StarGANEstimator(
      generator_fn=override_generator_fn or network.generator,
      discriminator_fn=override_discriminator_fn or network.discriminator,
      loss_fn=tfgan.stargan_loss,
      generator_optimizer=gen_opt,
      discriminator_optimizer=dis_opt,
      get_hooks_fn=tfgan.get_sequential_train_hooks(_define_train_step()),
      add_summaries=tfgan.estimator.SummaryType.IMAGES)

  # Get input function for training and test images.
  train_input_fn = lambda: data_provider.provide_data(  # pylint:disable=g-long-lambda
      FLAGS.image_file_patterns, FLAGS.batch_size, FLAGS.patch_size)
  test_images_np, _ = data_provider.provide_celeba_test_set()
  filename_str = os.path.join(FLAGS.output_dir, 'summary_image_%i.png')

  # Periodically train and write prediction output to disk.
  cur_step = 0
  while cur_step < FLAGS.max_number_of_steps:
    stargan_estimator.train(train_input_fn, steps=FLAGS.steps_per_eval)
    cur_step += FLAGS.steps_per_eval
    summary_img = _get_summary_image(stargan_estimator, test_images_np)
    _write_to_disk(summary_img, filename_str % cur_step)


if __name__ == '__main__':
  tf.flags.mark_flag_as_required('image_file_patterns')
  tf.app.run()