train.py 7.11 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
# Copyright 2017 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Trains a StarGAN model."""

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function


from absl import flags
import tensorflow as tf

import data_provider
import network

# FLAGS for data.
flags.DEFINE_multi_string(
    'image_file_patterns', None,
    'List of file pattern for different domain of images. '
    '(e.g.[\'black_hair\', \'blond_hair\', \'brown_hair\']')
flags.DEFINE_integer('batch_size', 6, 'The number of images in each batch.')
flags.DEFINE_integer('patch_size', 128, 'The patch size of images.')

flags.DEFINE_string('train_log_dir', '/tmp/stargan/',
                    'Directory where to write event logs.')

# FLAGS for training hyper-parameters.
flags.DEFINE_float('generator_lr', 1e-4, 'The generator learning rate.')
flags.DEFINE_float('discriminator_lr', 1e-4, 'The discriminator learning rate.')
flags.DEFINE_integer('max_number_of_steps', 1000000,
                     'The maximum number of gradient steps.')
flags.DEFINE_float('adam_beta1', 0.5, 'Adam Beta 1 for the Adam optimizer.')
flags.DEFINE_float('adam_beta2', 0.999, 'Adam Beta 2 for the Adam optimizer.')
flags.DEFINE_float('gen_disc_step_ratio', 0.2,
                   'Generator:Discriminator training step ratio.')

# FLAGS for distributed training.
flags.DEFINE_string('master', '', 'Name of the TensorFlow master to use.')
flags.DEFINE_integer(
    'ps_tasks', 0,
    'The number of parameter servers. If the value is 0, then the parameters '
    'are handled locally by the worker.')
flags.DEFINE_integer(
    'task', 0,
    'The Task ID. This value is used when training with multiple workers to '
    'identify each worker.')

FLAGS = flags.FLAGS
tfgan = tf.contrib.gan


def _define_model(images, labels):
  """Create the StarGAN Model.

  Args:
    images: `Tensor` or list of `Tensor` of shape (N, H, W, C).
    labels: `Tensor` or list of `Tensor` of shape (N, num_domains).

  Returns:
    `StarGANModel` namedtuple.
  """

  return tfgan.stargan_model(
      generator_fn=network.generator,
      discriminator_fn=network.discriminator,
      input_data=images,
      input_data_domain_label=labels)


def _get_lr(base_lr):
  """Returns a learning rate `Tensor`.

  Args:
    base_lr: A scalar float `Tensor` or a Python number.  The base learning
        rate.

  Returns:
    A scalar float `Tensor` of learning rate which equals `base_lr` when the
    global training step is less than FLAGS.max_number_of_steps / 2, afterwards
    it linearly decays to zero.
  """
  global_step = tf.train.get_or_create_global_step()
  lr_constant_steps = FLAGS.max_number_of_steps // 2

  def _lr_decay():
    return tf.train.polynomial_decay(
        learning_rate=base_lr,
        global_step=(global_step - lr_constant_steps),
        decay_steps=(FLAGS.max_number_of_steps - lr_constant_steps),
        end_learning_rate=0.0)

  return tf.cond(global_step < lr_constant_steps, lambda: base_lr, _lr_decay)


def _get_optimizer(gen_lr, dis_lr):
  """Returns generator optimizer and discriminator optimizer.

  Args:
    gen_lr: A scalar float `Tensor` or a Python number.  The Generator learning
        rate.
    dis_lr: A scalar float `Tensor` or a Python number.  The Discriminator
        learning rate.

  Returns:
    A tuple of generator optimizer and discriminator optimizer.
  """
  gen_opt = tf.train.AdamOptimizer(
      gen_lr, beta1=FLAGS.adam_beta1, beta2=FLAGS.adam_beta2, use_locking=True)
  dis_opt = tf.train.AdamOptimizer(
      dis_lr, beta1=FLAGS.adam_beta1, beta2=FLAGS.adam_beta2, use_locking=True)
  return gen_opt, dis_opt


def _define_train_ops(model, loss):
  """Defines train ops that trains `stargan_model` with `stargan_loss`.

  Args:
    model: A `StarGANModel` namedtuple.
    loss: A `StarGANLoss` namedtuple containing all losses for
        `stargan_model`.

  Returns:
    A `GANTrainOps` namedtuple.
  """

  gen_lr = _get_lr(FLAGS.generator_lr)
  dis_lr = _get_lr(FLAGS.discriminator_lr)
  gen_opt, dis_opt = _get_optimizer(gen_lr, dis_lr)
  train_ops = tfgan.gan_train_ops(
      model,
      loss,
      generator_optimizer=gen_opt,
      discriminator_optimizer=dis_opt,
      summarize_gradients=True,
      colocate_gradients_with_ops=True,
      aggregation_method=tf.AggregationMethod.EXPERIMENTAL_ACCUMULATE_N)

  tf.summary.scalar('generator_lr', gen_lr)
  tf.summary.scalar('discriminator_lr', dis_lr)

  return train_ops


def _define_train_step():
  """Get the training step for generator and discriminator for each GAN step.

  Returns:
    GANTrainSteps namedtuple representing the training step configuration.
  """

  if FLAGS.gen_disc_step_ratio <= 1:
    discriminator_step = int(1 / FLAGS.gen_disc_step_ratio)
    return tfgan.GANTrainSteps(1, discriminator_step)
  else:
    generator_step = int(FLAGS.gen_disc_step_ratio)
    return tfgan.GANTrainSteps(generator_step, 1)


def main(_):

  # Create the log_dir if not exist.
  if not tf.gfile.Exists(FLAGS.train_log_dir):
    tf.gfile.MakeDirs(FLAGS.train_log_dir)

  # Shard the model to different parameter servers.
  with tf.device(tf.train.replica_device_setter(FLAGS.ps_tasks)):

    # Create the input dataset.
    with tf.name_scope('inputs'):
      images, labels = data_provider.provide_data(
          FLAGS.image_file_patterns, FLAGS.batch_size, FLAGS.patch_size)

    # Define the model.
    with tf.name_scope('model'):
      model = _define_model(images, labels)

    # Add image summary.
    tfgan.eval.add_stargan_image_summaries(
        model,
        num_images=len(FLAGS.image_file_patterns) * FLAGS.batch_size,
        display_diffs=True)

    # Define the model loss.
    loss = tfgan.stargan_loss(model)

    # Define the train ops.
    with tf.name_scope('train_ops'):
      train_ops = _define_train_ops(model, loss)

    # Define the train steps.
    train_steps = _define_train_step()

    # Define a status message.
    status_message = tf.string_join(
        [
            'Starting train step: ',
            tf.as_string(tf.train.get_or_create_global_step())
        ],
        name='status_message')

    # Train the model.
    tfgan.gan_train(
        train_ops,
        FLAGS.train_log_dir,
        get_hooks_fn=tfgan.get_sequential_train_hooks(train_steps),
        hooks=[
            tf.train.StopAtStepHook(num_steps=FLAGS.max_number_of_steps),
            tf.train.LoggingTensorHook([status_message], every_n_iter=10)
        ],
        master=FLAGS.master,
        is_chief=FLAGS.task == 0)


if __name__ == '__main__':
  tf.flags.mark_flag_as_required('image_file_patterns')
  tf.app.run()