image_classification.py 2.94 KB
Newer Older
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
# Copyright 2022 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

"""Image classification input and model functions for serving/inference."""

import tensorflow as tf

from official.vision.modeling import factory
from official.vision.ops import preprocess_ops
from official.vision.serving import export_base


MEAN_RGB = (0.485 * 255, 0.456 * 255, 0.406 * 255)
STDDEV_RGB = (0.229 * 255, 0.224 * 255, 0.225 * 255)


class ClassificationModule(export_base.ExportModule):
  """classification Module."""

  def _build_model(self):
    input_specs = tf.keras.layers.InputSpec(
        shape=[self._batch_size] + self._input_image_size + [3])

    return factory.build_classification_model(
        input_specs=input_specs,
        model_config=self.params.task.model,
        l2_regularizer=None)

  def _build_inputs(self, image):
    """Builds classification model inputs for serving."""
    # Center crops and resizes image.
Fan Yang's avatar
Fan Yang committed
43
44
    if self.params.task.train_data.aug_crop:
      image = preprocess_ops.center_crop_image(image)
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81

    image = tf.image.resize(
        image, self._input_image_size, method=tf.image.ResizeMethod.BILINEAR)

    image = tf.reshape(
        image, [self._input_image_size[0], self._input_image_size[1], 3])

    # Normalizes image with mean and std pixel values.
    image = preprocess_ops.normalize_image(image,
                                           offset=MEAN_RGB,
                                           scale=STDDEV_RGB)
    return image

  def serve(self, images):
    """Cast image to float and run inference.

    Args:
      images: uint8 Tensor of shape [batch_size, None, None, 3]
    Returns:
      Tensor holding classification output logits.
    """
    # Skip image preprocessing when input_type is tflite so it is compatible
    # with TFLite quantization.
    if self._input_type != 'tflite':
      with tf.device('cpu:0'):
        images = tf.cast(images, dtype=tf.float32)

        images = tf.nest.map_structure(
            tf.identity,
            tf.map_fn(
                self._build_inputs,
                elems=images,
                fn_output_signature=tf.TensorSpec(
                    shape=self._input_image_size + [3], dtype=tf.float32),
                parallel_iterations=32))

    logits = self.inference_step(images)
Yang Feng's avatar
Yang Feng committed
82
83
84
85
    if self.params.task.train_data.is_multilabel:
      probs = tf.math.sigmoid(logits)
    else:
      probs = tf.nn.softmax(logits)
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
86
87

    return {'logits': logits, 'probs': probs}