fine_tuning_bert.ipynb 48.9 KB
Newer Older
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
1
2
3
4
5
{
  "cells": [
    {
      "cell_type": "markdown",
      "metadata": {
6
        "id": "vXLA5InzXydn"
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
7
8
      },
      "source": [
9
10
11
12
13
        "##### Copyright 2019 The TensorFlow Authors."
      ]
    },
    {
      "cell_type": "code",
Mark Daoust's avatar
Mark Daoust committed
14
      "execution_count": null,
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
      "metadata": {
        "cellView": "form",
        "id": "RuRlpLL-X0R_"
      },
      "outputs": [],
      "source": [
        "#@title Licensed under the Apache License, Version 2.0 (the \"License\");\n",
        "# you may not use this file except in compliance with the License.\n",
        "# You may obtain a copy of the License at\n",
        "#\n",
        "# https://www.apache.org/licenses/LICENSE-2.0\n",
        "#\n",
        "# Unless required by applicable law or agreed to in writing, software\n",
        "# distributed under the License is distributed on an \"AS IS\" BASIS,\n",
        "# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.\n",
        "# See the License for the specific language governing permissions and\n",
        "# limitations under the License."
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
32
33
34
35
36
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {
37
        "id": "1mLJmVotXs64"
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
38
39
      },
      "source": [
40
        "# Fine-tuning a BERT model"
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
41
42
43
44
45
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {
46
        "id": "hYEwGTeCXnnX"
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
47
48
      },
      "source": [
49
50
51
52
53
54
55
56
57
58
59
60
61
        "\u003ctable class=\"tfo-notebook-buttons\" align=\"left\"\u003e\n",
        "  \u003ctd\u003e\n",
        "    \u003ca target=\"_blank\" href=\"https://www.tensorflow.org/official_models/tutorials/fine_tune_bert.ipynb\"\u003e\u003cimg src=\"https://www.tensorflow.org/images/tf_logo_32px.png\" /\u003eView on TensorFlow.org\u003c/a\u003e\n",
        "  \u003c/td\u003e\n",
        "  \u003ctd\u003e\n",
        "    \u003ca target=\"_blank\" href=\"https://colab.research.google.com/github/tensorflow/models/blob/master/official/colab/fine_tuning_bert.ipynb\"\u003e\u003cimg src=\"https://www.tensorflow.org/images/colab_logo_32px.png\" /\u003eRun in Google Colab\u003c/a\u003e\n",
        "  \u003c/td\u003e\n",
        "  \u003ctd\u003e\n",
        "    \u003ca target=\"_blank\" href=\"https://github.com/tensorflow/models/blob/master/official/colab/fine_tuning_bert.ipynb\"\u003e\u003cimg src=\"https://www.tensorflow.org/images/GitHub-Mark-32px.png\" /\u003eView source on GitHub\u003c/a\u003e\n",
        "  \u003c/td\u003e\n",
        "  \u003ctd\u003e\n",
        "    \u003ca href=\"https://storage.googleapis.com/tensorflow_docs/models/official/colab/fine_tuning_bert.ipynb\"\u003e\u003cimg src=\"https://www.tensorflow.org/images/download_logo_32px.png\" /\u003eDownload notebook\u003c/a\u003e\n",
        "  \u003c/td\u003e\n",
62
63
64
        "  \u003ctd\u003e\n",
        "    \u003ca href=\"https://tfhub.dev/tensorflow/bert_en_uncased_L-12_H-768_A-12/2\"\u003e\u003cimg src=\"https://www.tensorflow.org/images/hub_logo_32px.png\" /\u003eSee TF Hub model\u003c/a\u003e\n",
        "  \u003c/td\u003e\n",
65
        "\u003c/table\u003e"
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
66
67
68
69
70
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {
71
        "id": "YN2ACivEPxgD"
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
72
73
      },
      "source": [
74
75
76
        "In this example, we will work through fine-tuning a BERT model using the tensorflow-models PIP package.\n",
        "\n",
        "The pretrained BERT model this tutorial is based on is also available on [TensorFlow Hub](https://tensorflow.org/hub), to see how to use it refer to the [Hub Appendix](#hub_bert)"
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
77
78
79
80
81
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {
Chen Chen's avatar
Chen Chen committed
82
        "id": "s2d9S2CSSO1z"
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
83
84
      },
      "source": [
85
        "## Setup"
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
86
87
88
89
90
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {
Chen Chen's avatar
Chen Chen committed
91
        "id": "fsACVQpVSifi"
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
92
93
94
95
      },
      "source": [
        "### Install the TensorFlow Model Garden pip package\n",
        "\n",
96
97
        "*  `tf-models-official` is the stable Model Garden package. Note that it may not include the latest changes in the `tensorflow_models` github repo. To include latest changes, you may install `tf-models-nightly`,\n",
        "which is the nightly Model Garden package created daily automatically.\n",
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
98
99
100
101
102
        "*  pip will install all models and dependencies automatically."
      ]
    },
    {
      "cell_type": "code",
Mark Daoust's avatar
Mark Daoust committed
103
      "execution_count": null,
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
104
      "metadata": {
Chen Chen's avatar
Chen Chen committed
105
        "id": "NvNr2svBM-p3"
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
106
      },
Chen Chen's avatar
Chen Chen committed
107
      "outputs": [],
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
108
      "source": [
109
        "!pip install -q tf-models-official==2.4.0"
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
110
111
112
113
114
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {
Chen Chen's avatar
Chen Chen committed
115
        "id": "U-7qPCjWUAyy"
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
116
117
      },
      "source": [
118
        "### Imports"
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
119
120
121
122
      ]
    },
    {
      "cell_type": "code",
Mark Daoust's avatar
Mark Daoust committed
123
      "execution_count": null,
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
124
      "metadata": {
Chen Chen's avatar
Chen Chen committed
125
        "id": "lXsXev5MNr20"
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
126
      },
Chen Chen's avatar
Chen Chen committed
127
      "outputs": [],
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
128
      "source": [
Chen Chen's avatar
Chen Chen committed
129
        "import os\n",
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
130
        "\n",
Chen Chen's avatar
Chen Chen committed
131
        "import numpy as np\n",
132
133
        "import matplotlib.pyplot as plt\n",
        "\n",
Chen Chen's avatar
Chen Chen committed
134
135
        "import tensorflow as tf\n",
        "\n",
136
137
138
139
        "import tensorflow_hub as hub\n",
        "import tensorflow_datasets as tfds\n",
        "tfds.disable_progress_bar()\n",
        "\n",
Chen Chen's avatar
Chen Chen committed
140
        "from official.modeling import tf_utils\n",
141
142
143
144
145
146
147
148
149
150
151
152
        "from official import nlp\n",
        "from official.nlp import bert\n",
        "\n",
        "# Load the required submodules\n",
        "import official.nlp.optimization\n",
        "import official.nlp.bert.bert_models\n",
        "import official.nlp.bert.configs\n",
        "import official.nlp.bert.run_classifier\n",
        "import official.nlp.bert.tokenization\n",
        "import official.nlp.data.classifier_data_lib\n",
        "import official.nlp.modeling.losses\n",
        "import official.nlp.modeling.models\n",
153
        "import official.nlp.modeling.networks\n"
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "id": "mbanlzTvJBsz"
      },
      "source": [
        "### Resources"
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "id": "PpW0x8TpR8DT"
      },
      "source": [
        "This directory contains the configuration, vocabulary, and a pre-trained checkpoint used in this tutorial:"
      ]
    },
    {
      "cell_type": "code",
Mark Daoust's avatar
Mark Daoust committed
176
      "execution_count": null,
177
178
179
180
181
      "metadata": {
        "id": "vzRHOLciR8eq"
      },
      "outputs": [],
      "source": [
182
        "gs_folder_bert = \"gs://cloud-tpu-checkpoints/bert/v3/uncased_L-12_H-768_A-12\"\n",
183
184
185
186
187
188
189
190
191
        "tf.io.gfile.listdir(gs_folder_bert)"
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "id": "9uFskufsR2LT"
      },
      "source": [
Mark Daoust's avatar
Mark Daoust committed
192
        "You can get a pre-trained BERT encoder from [TensorFlow Hub](https://tfhub.dev/tensorflow/bert_en_uncased_L-12_H-768_A-12/2):"
193
194
195
196
      ]
    },
    {
      "cell_type": "code",
Mark Daoust's avatar
Mark Daoust committed
197
      "execution_count": null,
198
199
200
201
202
      "metadata": {
        "id": "e0dAkUttJAzj"
      },
      "outputs": [],
      "source": [
203
        "hub_url_bert = \"https://tfhub.dev/tensorflow/bert_en_uncased_L-12_H-768_A-12/3\""
Chen Chen's avatar
Chen Chen committed
204
      ]
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
205
206
207
208
    },
    {
      "cell_type": "markdown",
      "metadata": {
209
        "id": "Qv6abtRvH4xO"
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
210
211
      },
      "source": [
212
213
214
215
        "## The data\n",
        "For this example we used the [GLUE MRPC dataset from TFDS](https://www.tensorflow.org/datasets/catalog/glue#gluemrpc).\n",
        "\n",
        "This dataset is not set up so that it can be directly fed into the BERT model, so this section also handles the necessary preprocessing."
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
216
217
218
219
220
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {
221
        "id": "28DvUhC1YUiB"
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
222
223
      },
      "source": [
224
        "### Get the dataset from TensorFlow Datasets\n",
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
225
        "\n",
Chen Chen's avatar
Chen Chen committed
226
        "The Microsoft Research Paraphrase Corpus (Dolan \u0026 Brockett, 2005) is a corpus of sentence pairs automatically extracted from online news sources, with human annotations for whether the sentences in the pair are semantically equivalent.\n",
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
227
228
229
230
        "\n",
        "*   Number of labels: 2.\n",
        "*   Size of training dataset: 3668.\n",
        "*   Size of evaluation dataset: 408.\n",
231
232
233
234
235
        "*   Maximum sequence length of training and evaluation dataset: 128.\n"
      ]
    },
    {
      "cell_type": "code",
Mark Daoust's avatar
Mark Daoust committed
236
      "execution_count": null,
237
238
239
240
241
242
243
244
245
246
247
248
      "metadata": {
        "id": "Ijikx5OsH9AT"
      },
      "outputs": [],
      "source": [
        "glue, info = tfds.load('glue/mrpc', with_info=True,\n",
        "                       # It's small, load the whole dataset\n",
        "                       batch_size=-1)"
      ]
    },
    {
      "cell_type": "code",
Mark Daoust's avatar
Mark Daoust committed
249
      "execution_count": null,
250
251
252
253
254
255
      "metadata": {
        "id": "xf9zz4vLYXjr"
      },
      "outputs": [],
      "source": [
        "list(glue.keys())"
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
256
257
258
259
260
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {
261
        "id": "ZgBg2r2nYT-K"
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
262
263
      },
      "source": [
264
265
266
267
268
        "The `info` object describes the dataset and it's features:"
      ]
    },
    {
      "cell_type": "code",
Mark Daoust's avatar
Mark Daoust committed
269
      "execution_count": null,
270
271
272
273
274
275
      "metadata": {
        "id": "IQrHxv7W7jH5"
      },
      "outputs": [],
      "source": [
        "info.features"
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
276
277
278
279
280
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {
281
        "id": "vhsVWYNxazz5"
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
282
283
      },
      "source": [
284
        "The two classes are:"
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
285
286
287
288
      ]
    },
    {
      "cell_type": "code",
Mark Daoust's avatar
Mark Daoust committed
289
      "execution_count": null,
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
290
      "metadata": {
291
        "id": "n0gfc_VTayfQ"
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
292
      },
Chen Chen's avatar
Chen Chen committed
293
      "outputs": [],
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
294
      "source": [
295
        "info.features['label'].names"
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
296
297
298
299
300
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {
301
        "id": "38zJcap6xkbC"
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
302
303
      },
      "source": [
304
        "Here is one example from the training set:"
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
305
306
307
308
      ]
    },
    {
      "cell_type": "code",
Mark Daoust's avatar
Mark Daoust committed
309
      "execution_count": null,
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
310
      "metadata": {
311
        "id": "xON_i6SkwApW"
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
312
      },
Chen Chen's avatar
Chen Chen committed
313
      "outputs": [],
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
314
      "source": [
315
        "glue_train = glue['train']\n",
Chen Chen's avatar
Chen Chen committed
316
        "\n",
317
318
        "for key, value in glue_train.items():\n",
        "  print(f\"{key:9s}: {value[0].numpy()}\")"
Chen Chen's avatar
Chen Chen committed
319
      ]
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
320
321
322
323
    },
    {
      "cell_type": "markdown",
      "metadata": {
324
        "id": "9fbTyfJpNr7x"
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
325
326
      },
      "source": [
327
        "### The BERT tokenizer"
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
328
329
330
331
332
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {
333
        "id": "wqeN54S61ZKQ"
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
334
335
      },
      "source": [
336
        "To fine tune a pre-trained model you need to be sure that you're using exactly the same tokenization, vocabulary, and index mapping as you used during training.\n",
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
337
        "\n",
338
339
340
        "The BERT tokenizer used in this tutorial is written in pure Python (It's not built out of TensorFlow ops). So you can't just plug it into your model as a `keras.layer` like you can with `preprocessing.TextVectorization`.\n",
        "\n",
        "The following code rebuilds the tokenizer that was used by the base model:"
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
341
342
343
344
      ]
    },
    {
      "cell_type": "code",
Mark Daoust's avatar
Mark Daoust committed
345
      "execution_count": null,
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
346
      "metadata": {
347
        "id": "idxyhmrCQcw5"
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
348
      },
Chen Chen's avatar
Chen Chen committed
349
      "outputs": [],
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
350
      "source": [
351
352
353
354
355
356
        "# Set up tokenizer to generate Tensorflow dataset\n",
        "tokenizer = bert.tokenization.FullTokenizer(\n",
        "    vocab_file=os.path.join(gs_folder_bert, \"vocab.txt\"),\n",
        "     do_lower_case=True)\n",
        "\n",
        "print(\"Vocab size:\", len(tokenizer.vocab))"
Chen Chen's avatar
Chen Chen committed
357
358
359
360
361
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {
362
        "id": "zYHDSquU2lDU"
Chen Chen's avatar
Chen Chen committed
363
364
      },
      "source": [
365
        "Tokenize a sentence:"
Chen Chen's avatar
Chen Chen committed
366
367
368
369
      ]
    },
    {
      "cell_type": "code",
Mark Daoust's avatar
Mark Daoust committed
370
      "execution_count": null,
Chen Chen's avatar
Chen Chen committed
371
      "metadata": {
372
        "id": "L_OfOYPg853R"
Chen Chen's avatar
Chen Chen committed
373
374
375
      },
      "outputs": [],
      "source": [
376
377
378
379
        "tokens = tokenizer.tokenize(\"Hello TensorFlow!\")\n",
        "print(tokens)\n",
        "ids = tokenizer.convert_tokens_to_ids(tokens)\n",
        "print(ids)"
Chen Chen's avatar
Chen Chen committed
380
      ]
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
381
382
383
384
    },
    {
      "cell_type": "markdown",
      "metadata": {
385
        "id": "kkAXLtuyWWDI"
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
386
387
      },
      "source": [
388
        "### Preprocess the data\n",
Chen Chen's avatar
Chen Chen committed
389
        "\n",
390
391
392
393
394
395
396
397
398
399
400
401
402
403
        "The section manually preprocessed the dataset into the format expected by the model.\n",
        "\n",
        "This dataset is small, so preprocessing can be done quickly and easily in memory. For larger datasets the `tf_models` library includes some tools for preprocessing and re-serializing a dataset. See [Appendix: Re-encoding a large dataset](#re_encoding_tools) for details."
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "id": "62UTWLQd9-LB"
      },
      "source": [
        "#### Encode the sentences\n",
        "\n",
        "The model expects its two inputs sentences to be concatenated together. This input is expected to start with a `[CLS]` \"This is a classification problem\" token, and each sentence should end with a `[SEP]` \"Separator\" token:"
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
404
405
406
407
      ]
    },
    {
      "cell_type": "code",
Mark Daoust's avatar
Mark Daoust committed
408
      "execution_count": null,
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
409
      "metadata": {
410
        "id": "bdL-dRNRBRJT"
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
411
      },
Chen Chen's avatar
Chen Chen committed
412
      "outputs": [],
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
413
      "source": [
414
        "tokenizer.convert_tokens_to_ids(['[CLS]', '[SEP]'])"
Chen Chen's avatar
Chen Chen committed
415
      ]
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
416
417
418
419
    },
    {
      "cell_type": "markdown",
      "metadata": {
420
        "id": "UrPktnqpwqie"
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
421
422
      },
      "source": [
423
        "Start by encoding all the sentences while appending a `[SEP]` token, and packing them into ragged-tensors:"
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
424
425
426
427
      ]
    },
    {
      "cell_type": "code",
Mark Daoust's avatar
Mark Daoust committed
428
      "execution_count": null,
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
429
      "metadata": {
430
        "id": "BR7BmtU498Bh"
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
431
      },
Chen Chen's avatar
Chen Chen committed
432
      "outputs": [],
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
433
      "source": [
434
435
436
437
        "def encode_sentence(s):\n",
        "   tokens = list(tokenizer.tokenize(s.numpy()))\n",
        "   tokens.append('[SEP]')\n",
        "   return tokenizer.convert_tokens_to_ids(tokens)\n",
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
438
        "\n",
439
440
441
442
443
444
445
446
        "sentence1 = tf.ragged.constant([\n",
        "    encode_sentence(s) for s in glue_train[\"sentence1\"]])\n",
        "sentence2 = tf.ragged.constant([\n",
        "    encode_sentence(s) for s in glue_train[\"sentence2\"]])"
      ]
    },
    {
      "cell_type": "code",
Mark Daoust's avatar
Mark Daoust committed
447
      "execution_count": null,
448
449
450
451
452
453
454
      "metadata": {
        "id": "has42aUdfky-"
      },
      "outputs": [],
      "source": [
        "print(\"Sentence1 shape:\", sentence1.shape.as_list())\n",
        "print(\"Sentence2 shape:\", sentence2.shape.as_list())"
Chen Chen's avatar
Chen Chen committed
455
456
457
458
459
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {
460
        "id": "MU9lTWy_xXbb"
Chen Chen's avatar
Chen Chen committed
461
462
      },
      "source": [
463
        "Now prepend a `[CLS]` token, and concatenate the ragged tensors to form a single `input_word_ids` tensor for each example. `RaggedTensor.to_tensor()` zero pads to the longest sequence."
Chen Chen's avatar
Chen Chen committed
464
465
466
467
      ]
    },
    {
      "cell_type": "code",
Mark Daoust's avatar
Mark Daoust committed
468
      "execution_count": null,
Chen Chen's avatar
Chen Chen committed
469
      "metadata": {
470
        "id": "USD8uihw-g4J"
Chen Chen's avatar
Chen Chen committed
471
472
473
      },
      "outputs": [],
      "source": [
474
475
476
        "cls = [tokenizer.convert_tokens_to_ids(['[CLS]'])]*sentence1.shape[0]\n",
        "input_word_ids = tf.concat([cls, sentence1, sentence2], axis=-1)\n",
        "_ = plt.pcolormesh(input_word_ids.to_tensor())"
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
477
478
479
480
481
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
        "id": "xmNv4l4k-dBZ"
      },
      "source": [
        "#### Mask and input type"
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "id": "DIWjNIKq-ldh"
      },
      "source": [
        "The model expects two additional inputs:\n",
        "\n",
        "* The input mask\n",
        "* The input type"
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "id": "ulNZ4U96-8JZ"
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
504
505
      },
      "source": [
506
        "The mask allows the model to cleanly differentiate between the content and the padding. The mask has the same shape as the `input_word_ids`, and contains a `1` anywhere the `input_word_ids` is not padding."
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
507
508
509
510
      ]
    },
    {
      "cell_type": "code",
Mark Daoust's avatar
Mark Daoust committed
511
      "execution_count": null,
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
512
      "metadata": {
513
        "id": "EezOO9qj91kP"
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
514
      },
Chen Chen's avatar
Chen Chen committed
515
      "outputs": [],
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
516
      "source": [
517
518
519
        "input_mask = tf.ones_like(input_word_ids).to_tensor()\n",
        "\n",
        "plt.pcolormesh(input_mask)"
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
520
521
522
523
524
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {
525
        "id": "rxLenwAvCkBf"
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
526
527
      },
      "source": [
528
        "The \"input type\" also has the same shape, but inside the non-padded region, contains a `0` or a `1` indicating which sentence the token is a part of. "
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
529
530
531
532
      ]
    },
    {
      "cell_type": "code",
Mark Daoust's avatar
Mark Daoust committed
533
      "execution_count": null,
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
534
      "metadata": {
535
        "id": "2CetH_5C9P2m"
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
536
      },
Chen Chen's avatar
Chen Chen committed
537
      "outputs": [],
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
538
      "source": [
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
        "type_cls = tf.zeros_like(cls)\n",
        "type_s1 = tf.zeros_like(sentence1)\n",
        "type_s2 = tf.ones_like(sentence2)\n",
        "input_type_ids = tf.concat([type_cls, type_s1, type_s2], axis=-1).to_tensor()\n",
        "\n",
        "plt.pcolormesh(input_type_ids)"
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "id": "P5UBnCn8Ii6s"
      },
      "source": [
        "#### Put it all together\n",
        "\n",
        "Collect the above text parsing code into a single function, and apply it to each split of the `glue/mrpc` dataset."
      ]
    },
    {
      "cell_type": "code",
Mark Daoust's avatar
Mark Daoust committed
560
      "execution_count": null,
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
      "metadata": {
        "id": "sDGiWYPLEd5a"
      },
      "outputs": [],
      "source": [
        "def encode_sentence(s, tokenizer):\n",
        "   tokens = list(tokenizer.tokenize(s))\n",
        "   tokens.append('[SEP]')\n",
        "   return tokenizer.convert_tokens_to_ids(tokens)\n",
        "\n",
        "def bert_encode(glue_dict, tokenizer):\n",
        "  num_examples = len(glue_dict[\"sentence1\"])\n",
        "  \n",
        "  sentence1 = tf.ragged.constant([\n",
        "      encode_sentence(s, tokenizer)\n",
        "      for s in np.array(glue_dict[\"sentence1\"])])\n",
        "  sentence2 = tf.ragged.constant([\n",
        "      encode_sentence(s, tokenizer)\n",
        "       for s in np.array(glue_dict[\"sentence2\"])])\n",
        "\n",
        "  cls = [tokenizer.convert_tokens_to_ids(['[CLS]'])]*sentence1.shape[0]\n",
        "  input_word_ids = tf.concat([cls, sentence1, sentence2], axis=-1)\n",
        "\n",
        "  input_mask = tf.ones_like(input_word_ids).to_tensor()\n",
        "\n",
        "  type_cls = tf.zeros_like(cls)\n",
        "  type_s1 = tf.zeros_like(sentence1)\n",
        "  type_s2 = tf.ones_like(sentence2)\n",
        "  input_type_ids = tf.concat(\n",
        "      [type_cls, type_s1, type_s2], axis=-1).to_tensor()\n",
        "\n",
        "  inputs = {\n",
        "      'input_word_ids': input_word_ids.to_tensor(),\n",
        "      'input_mask': input_mask,\n",
        "      'input_type_ids': input_type_ids}\n",
        "\n",
        "  return inputs"
      ]
    },
    {
      "cell_type": "code",
Mark Daoust's avatar
Mark Daoust committed
602
      "execution_count": null,
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
      "metadata": {
        "id": "yuLKxf6zHxw-"
      },
      "outputs": [],
      "source": [
        "glue_train = bert_encode(glue['train'], tokenizer)\n",
        "glue_train_labels = glue['train']['label']\n",
        "\n",
        "glue_validation = bert_encode(glue['validation'], tokenizer)\n",
        "glue_validation_labels = glue['validation']['label']\n",
        "\n",
        "glue_test = bert_encode(glue['test'], tokenizer)\n",
        "glue_test_labels  = glue['test']['label']"
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "id": "7FC5aLVxKVKK"
      },
      "source": [
        "Each subset of the data has been converted to a dictionary of features, and a set of labels. Each feature in the input dictionary has the same shape, and the number of labels should match:"
      ]
    },
    {
      "cell_type": "code",
Mark Daoust's avatar
Mark Daoust committed
629
      "execution_count": null,
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
      "metadata": {
        "id": "jyjTdGpFhO_1"
      },
      "outputs": [],
      "source": [
        "for key, value in glue_train.items():\n",
        "  print(f'{key:15s} shape: {value.shape}')\n",
        "\n",
        "print(f'glue_train_labels shape: {glue_train_labels.shape}')"
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "id": "FSwymsbkbLDA"
      },
      "source": [
        "## The model"
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "id": "Efrj3Cn1kLAp"
      },
      "source": [
        "### Build the model\n"
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "id": "xxpOY5r2Ayq6"
      },
      "source": [
        "The first step is to download the configuration  for the pre-trained model.\n"
      ]
    },
    {
      "cell_type": "code",
Mark Daoust's avatar
Mark Daoust committed
670
      "execution_count": null,
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
      "metadata": {
        "id": "ujapVfZ_AKW7"
      },
      "outputs": [],
      "source": [
        "import json\n",
        "\n",
        "bert_config_file = os.path.join(gs_folder_bert, \"bert_config.json\")\n",
        "config_dict = json.loads(tf.io.gfile.GFile(bert_config_file).read())\n",
        "\n",
        "bert_config = bert.configs.BertConfig.from_dict(config_dict)\n",
        "\n",
        "config_dict"
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "id": "96ldxDSwkVkj"
      },
      "source": [
        "The `config` defines the core BERT Model, which is a Keras model to predict the outputs of `num_classes` from the inputs with maximum sequence length `max_seq_length`.\n",
        "\n",
        "This function returns both the encoder and the classifier."
      ]
    },
    {
      "cell_type": "code",
Mark Daoust's avatar
Mark Daoust committed
699
      "execution_count": null,
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
      "metadata": {
        "id": "cH682__U0FBv"
      },
      "outputs": [],
      "source": [
        "bert_classifier, bert_encoder = bert.bert_models.classifier_model(\n",
        "    bert_config, num_labels=2)"
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "id": "XqKp3-5GIZlw"
      },
      "source": [
        "The classifier has three inputs and one output:"
      ]
    },
    {
      "cell_type": "code",
Mark Daoust's avatar
Mark Daoust committed
720
      "execution_count": null,
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
      "metadata": {
        "id": "bAQblMIjwkvx"
      },
      "outputs": [],
      "source": [
        "tf.keras.utils.plot_model(bert_classifier, show_shapes=True, dpi=48)"
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "id": "sFmVG4SKZAw8"
      },
      "source": [
        "Run it on a test batch of data 10 examples from the training set. The output is the logits for the two classes:"
      ]
    },
    {
      "cell_type": "code",
Mark Daoust's avatar
Mark Daoust committed
740
      "execution_count": null,
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
      "metadata": {
        "id": "VTjgPbp4ZDKo"
      },
      "outputs": [],
      "source": [
        "glue_batch = {key: val[:10] for key, val in glue_train.items()}\n",
        "\n",
        "bert_classifier(\n",
        "    glue_batch, training=True\n",
        ").numpy()"
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "id": "Q0NTdwZsQK8n"
      },
      "source": [
        "The `TransformerEncoder` in the center of the classifier above **is** the `bert_encoder`.\n",
        "\n",
        "Inspecting the encoder, we see its stack of `Transformer` layers connected to those same three inputs:"
      ]
    },
    {
      "cell_type": "code",
Mark Daoust's avatar
Mark Daoust committed
766
      "execution_count": null,
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
      "metadata": {
        "id": "8L__-erBwLIQ"
      },
      "outputs": [],
      "source": [
        "tf.keras.utils.plot_model(bert_encoder, show_shapes=True, dpi=48)"
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "id": "mKAvkQc3heSy"
      },
      "source": [
        "### Restore the encoder weights\n",
        "\n",
        "When built the encoder is randomly initialized. Restore the encoder's weights from the checkpoint:"
      ]
    },
    {
      "cell_type": "code",
Mark Daoust's avatar
Mark Daoust committed
788
      "execution_count": null,
789
790
791
792
793
      "metadata": {
        "id": "97Ll2Gichd_Y"
      },
      "outputs": [],
      "source": [
794
795
        "checkpoint = tf.train.Checkpoint(encoder=bert_encoder)\n",
        "checkpoint.read(\n",
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
        "    os.path.join(gs_folder_bert, 'bert_model.ckpt')).assert_consumed()"
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "id": "2oHOql35k3Dd"
      },
      "source": [
        "Note: The pretrained `TransformerEncoder` is also available on [TensorFlow Hub](https://tensorflow.org/hub). See the [Hub appendix](#hub_bert) for details. "
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "id": "115caFLMk-_l"
      },
      "source": [
        "### Set up the optimizer\n",
        "\n",
        "BERT adopts the Adam optimizer with weight decay (aka \"[AdamW](https://arxiv.org/abs/1711.05101)\").\n",
        "It also employs a learning rate schedule that firstly warms up from 0 and then decays to 0."
      ]
    },
    {
      "cell_type": "code",
Mark Daoust's avatar
Mark Daoust committed
822
      "execution_count": null,
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
      "metadata": {
        "id": "w8qXKRZuCwW4"
      },
      "outputs": [],
      "source": [
        "# Set up epochs and steps\n",
        "epochs = 3\n",
        "batch_size = 32\n",
        "eval_batch_size = 32\n",
        "\n",
        "train_data_size = len(glue_train_labels)\n",
        "steps_per_epoch = int(train_data_size / batch_size)\n",
        "num_train_steps = steps_per_epoch * epochs\n",
        "warmup_steps = int(epochs * train_data_size * 0.1 / batch_size)\n",
        "\n",
        "# creates an optimizer with learning rate schedule\n",
        "optimizer = nlp.optimization.create_optimizer(\n",
        "    2e-5, num_train_steps=num_train_steps, num_warmup_steps=warmup_steps)"
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "id": "pXRGxiRNEHS2"
      },
      "source": [
        "This returns an `AdamWeightDecay`  optimizer with the learning rate schedule set:"
      ]
    },
    {
      "cell_type": "code",
Mark Daoust's avatar
Mark Daoust committed
854
      "execution_count": null,
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
      "metadata": {
        "id": "eQNA16bhDpky"
      },
      "outputs": [],
      "source": [
        "type(optimizer)"
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "id": "xqu_K71fJQB8"
      },
      "source": [
        "To see an example of how to customize the optimizer and it's schedule, see the [Optimizer schedule appendix](#optiizer_schedule)."
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "id": "78FEUOOEkoP0"
      },
      "source": [
        "### Train the model"
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "id": "OTNcA0O0nSq9"
      },
      "source": [
        "The metric is accuracy and we use sparse categorical cross-entropy as loss."
      ]
    },
    {
      "cell_type": "code",
Mark Daoust's avatar
Mark Daoust committed
892
      "execution_count": null,
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
      "metadata": {
        "id": "nzi8hjeTQTRs"
      },
      "outputs": [],
      "source": [
        "metrics = [tf.keras.metrics.SparseCategoricalAccuracy('accuracy', dtype=tf.float32)]\n",
        "loss = tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True)\n",
        "\n",
        "bert_classifier.compile(\n",
        "    optimizer=optimizer,\n",
        "    loss=loss,\n",
        "    metrics=metrics)\n",
        "\n",
        "bert_classifier.fit(\n",
        "      glue_train, glue_train_labels,\n",
        "      validation_data=(glue_validation, glue_validation_labels),\n",
        "      batch_size=32,\n",
        "      epochs=epochs)"
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "id": "IFtKFWbNKb0u"
      },
      "source": [
        "Now run the fine-tuned model on a custom example to see that it works.\n",
        "\n",
        "Start by encoding some sentence pairs:"
      ]
    },
    {
      "cell_type": "code",
Mark Daoust's avatar
Mark Daoust committed
926
      "execution_count": null,
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
      "metadata": {
        "id": "9ZoUgDUNJPz3"
      },
      "outputs": [],
      "source": [
        "my_examples = bert_encode(\n",
        "    glue_dict = {\n",
        "        'sentence1':[\n",
        "            'The rain in Spain falls mainly on the plain.',\n",
        "            'Look I fine tuned BERT.'],\n",
        "        'sentence2':[\n",
        "            'It mostly rains on the flat lands of Spain.',\n",
        "            'Is it working? This does not match.']\n",
        "    },\n",
        "    tokenizer=tokenizer)"
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "id": "7ynJibkBRTJF"
      },
      "source": [
        "The model should report class `1` \"match\" for the first example and class `0` \"no-match\" for the second:"
      ]
    },
    {
      "cell_type": "code",
Mark Daoust's avatar
Mark Daoust committed
955
      "execution_count": null,
956
957
958
959
960
961
962
      "metadata": {
        "id": "umo0ttrgRYIM"
      },
      "outputs": [],
      "source": [
        "result = bert_classifier(my_examples, training=False)\n",
        "\n",
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
963
        "result = tf.argmax(result, axis=-1).numpy()\n",
964
965
966
967
968
        "result"
      ]
    },
    {
      "cell_type": "code",
Mark Daoust's avatar
Mark Daoust committed
969
      "execution_count": null,
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
      "metadata": {
        "id": "utGl0M3aZCE4"
      },
      "outputs": [],
      "source": [
        "np.array(info.features['label'].names)[result]"
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "id": "fVo_AnT0l26j"
      },
      "source": [
        "### Save the model\n",
        "\n",
        "Often the goal of training a model is to _use_ it for something, so export the model and then restore it to be sure that it works."
      ]
    },
    {
      "cell_type": "code",
Mark Daoust's avatar
Mark Daoust committed
991
      "execution_count": null,
992
993
994
995
996
997
998
999
1000
1001
1002
      "metadata": {
        "id": "Nl5x6nElZqkP"
      },
      "outputs": [],
      "source": [
        "export_dir='./saved_model'\n",
        "tf.saved_model.save(bert_classifier, export_dir=export_dir)"
      ]
    },
    {
      "cell_type": "code",
Mark Daoust's avatar
Mark Daoust committed
1003
      "execution_count": null,
1004
      "metadata": {
1005
        "collapsed": true,
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
        "id": "y_ACvKPsVUXC"
      },
      "outputs": [],
      "source": [
        "reloaded = tf.saved_model.load(export_dir)\n",
        "reloaded_result = reloaded([my_examples['input_word_ids'],\n",
        "                            my_examples['input_mask'],\n",
        "                            my_examples['input_type_ids']], training=False)\n",
        "\n",
        "original_result = bert_classifier(my_examples, training=False)\n",
        "\n",
        "# The results are (nearly) identical:\n",
        "print(original_result.numpy())\n",
        "print()\n",
        "print(reloaded_result.numpy())"
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "id": "eQceYqRFT_Eg"
      },
      "source": [
        "## Appendix"
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "id": "SaC1RlFawUpc"
      },
      "source": [
        "\u003ca id=re_encoding_tools\u003e\u003c/a\u003e\n",
        "### Re-encoding a large dataset"
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "id": "CwUdjFBkzUgh"
      },
      "source": [
        "This tutorial you re-encoded the dataset in memory, for clarity.\n",
        "\n",
        "This was only possible because `glue/mrpc` is a very small dataset. To deal with larger datasets `tf_models` library includes some tools for processing and re-encoding a dataset for efficient training."
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "id": "2UTQrkyOT5wD"
      },
      "source": [
        "The first step is to describe which features of the dataset should be transformed:"
      ]
    },
    {
      "cell_type": "code",
Mark Daoust's avatar
Mark Daoust committed
1064
      "execution_count": null,
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
      "metadata": {
        "id": "XQeDFOzYR9Z9"
      },
      "outputs": [],
      "source": [
        "processor = nlp.data.classifier_data_lib.TfdsProcessor(\n",
        "    tfds_params=\"dataset=glue/mrpc,text_key=sentence1,text_b_key=sentence2\",\n",
        "    process_text_fn=bert.tokenization.convert_to_unicode)"
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "id": "XrFQbfErUWxa"
      },
      "source": [
        "Then apply the transformation to generate new TFRecord files."
      ]
    },
    {
      "cell_type": "code",
Mark Daoust's avatar
Mark Daoust committed
1086
      "execution_count": null,
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
      "metadata": {
        "id": "ymw7GOHpSHKU"
      },
      "outputs": [],
      "source": [
        "# Set up output of training and evaluation Tensorflow dataset\n",
        "train_data_output_path=\"./mrpc_train.tf_record\"\n",
        "eval_data_output_path=\"./mrpc_eval.tf_record\"\n",
        "\n",
        "max_seq_length = 128\n",
        "batch_size = 32\n",
        "eval_batch_size = 32\n",
        "\n",
        "# Generate and save training data into a tf record file\n",
        "input_meta_data = (\n",
        "    nlp.data.classifier_data_lib.generate_tf_record_from_data_file(\n",
        "      processor=processor,\n",
        "      data_dir=None,  # It is `None` because data is from tfds, not local dir.\n",
        "      tokenizer=tokenizer,\n",
        "      train_data_output_path=train_data_output_path,\n",
        "      eval_data_output_path=eval_data_output_path,\n",
        "      max_seq_length=max_seq_length))"
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "id": "uX_Sp-wTUoRm"
      },
      "source": [
        "Finally create `tf.data` input pipelines from those TFRecord files:"
      ]
    },
    {
      "cell_type": "code",
Mark Daoust's avatar
Mark Daoust committed
1122
      "execution_count": null,
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
      "metadata": {
        "id": "rkHxIK57SQ_r"
      },
      "outputs": [],
      "source": [
        "training_dataset = bert.run_classifier.get_dataset_fn(\n",
        "    train_data_output_path,\n",
        "    max_seq_length,\n",
        "    batch_size,\n",
        "    is_training=True)()\n",
        "\n",
        "evaluation_dataset = bert.run_classifier.get_dataset_fn(\n",
        "    eval_data_output_path,\n",
        "    max_seq_length,\n",
        "    eval_batch_size,\n",
        "    is_training=False)()\n"
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "id": "stbaVouogvzS"
      },
      "source": [
        "The resulting `tf.data.Datasets` return `(features, labels)` pairs, as expected by `keras.Model.fit`:"
      ]
    },
    {
      "cell_type": "code",
Mark Daoust's avatar
Mark Daoust committed
1152
      "execution_count": null,
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
      "metadata": {
        "id": "gwhrlQl4gxVF"
      },
      "outputs": [],
      "source": [
        "training_dataset.element_spec"
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "id": "dbJ76vSJj77j"
      },
      "source": [
        "#### Create tf.data.Dataset for training and evaluation\n"
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "id": "9J95LFRohiYw"
      },
      "source": [
        "If you need to modify the data loading here is some code to get you started:"
      ]
    },
    {
      "cell_type": "code",
Mark Daoust's avatar
Mark Daoust committed
1181
      "execution_count": null,
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
      "metadata": {
        "id": "gCvaLLAxPuMc"
      },
      "outputs": [],
      "source": [
        "def create_classifier_dataset(file_path, seq_length, batch_size, is_training):\n",
        "  \"\"\"Creates input dataset from (tf)records files for train/eval.\"\"\"\n",
        "  dataset = tf.data.TFRecordDataset(file_path)\n",
        "  if is_training:\n",
        "    dataset = dataset.shuffle(100)\n",
        "    dataset = dataset.repeat()\n",
        "\n",
        "  def decode_record(record):\n",
        "    name_to_features = {\n",
        "      'input_ids': tf.io.FixedLenFeature([seq_length], tf.int64),\n",
        "      'input_mask': tf.io.FixedLenFeature([seq_length], tf.int64),\n",
        "      'segment_ids': tf.io.FixedLenFeature([seq_length], tf.int64),\n",
        "      'label_ids': tf.io.FixedLenFeature([], tf.int64),\n",
        "    }\n",
        "    return tf.io.parse_single_example(record, name_to_features)\n",
        "\n",
        "  def _select_data_from_record(record):\n",
        "    x = {\n",
        "        'input_word_ids': record['input_ids'],\n",
        "        'input_mask': record['input_mask'],\n",
        "        'input_type_ids': record['segment_ids']\n",
        "    }\n",
        "    y = record['label_ids']\n",
        "    return (x, y)\n",
        "\n",
        "  dataset = dataset.map(decode_record,\n",
        "                        num_parallel_calls=tf.data.experimental.AUTOTUNE)\n",
        "  dataset = dataset.map(\n",
        "      _select_data_from_record,\n",
        "      num_parallel_calls=tf.data.experimental.AUTOTUNE)\n",
        "  dataset = dataset.batch(batch_size, drop_remainder=is_training)\n",
        "  dataset = dataset.prefetch(tf.data.experimental.AUTOTUNE)\n",
        "  return dataset"
      ]
    },
    {
      "cell_type": "code",
Mark Daoust's avatar
Mark Daoust committed
1224
      "execution_count": null,
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
      "metadata": {
        "id": "rutkBadrhzdR"
      },
      "outputs": [],
      "source": [
        "# Set up batch sizes\n",
        "batch_size = 32\n",
        "eval_batch_size = 32\n",
        "\n",
        "# Return Tensorflow dataset\n",
        "training_dataset = create_classifier_dataset(\n",
        "    train_data_output_path,\n",
        "    input_meta_data['max_seq_length'],\n",
        "    batch_size,\n",
        "    is_training=True)\n",
        "\n",
        "evaluation_dataset = create_classifier_dataset(\n",
        "    eval_data_output_path,\n",
        "    input_meta_data['max_seq_length'],\n",
        "    eval_batch_size,\n",
        "    is_training=False)"
      ]
    },
    {
      "cell_type": "code",
Mark Daoust's avatar
Mark Daoust committed
1250
      "execution_count": null,
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
      "metadata": {
        "id": "59TVgt4Z7fuU"
      },
      "outputs": [],
      "source": [
        "training_dataset.element_spec"
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "id": "QbklKt-w_CiI"
      },
      "source": [
        "\u003ca id=\"hub_bert\"\u003e\u003c/a\u003e\n",
        "\n",
        "### TFModels BERT on TFHub\n",
        "\n",
        "You can get [the BERT model](https://tfhub.dev/tensorflow/bert_en_uncased_L-12_H-768_A-12/2) off the shelf from [TFHub](https://tensorflow.org/hub). It would not be hard to add a classification head on top of this `hub.KerasLayer`"
      ]
    },
    {
      "cell_type": "code",
Mark Daoust's avatar
Mark Daoust committed
1274
      "execution_count": null,
1275
      "metadata": {
Mark Daoust's avatar
Mark Daoust committed
1276
        "id": "GDWrHm0BGpbX"
1277
1278
1279
1280
      },
      "outputs": [],
      "source": [
        "# Note: 350MB download.\n",
Mark Daoust's avatar
Mark Daoust committed
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
        "import tensorflow_hub as hub"
      ]
    },
    {
      "cell_type": "code",
      "execution_count": null,
      "metadata": {
        "cellView": "form",
        "id": "Y29meH0qGq_5"
      },
      "outputs": [],
      "source": [
        "hub_model_name = \"bert_en_uncased_L-12_H-768_A-12\" #@param [\"bert_en_uncased_L-24_H-1024_A-16\", \"bert_en_wwm_cased_L-24_H-1024_A-16\", \"bert_en_uncased_L-12_H-768_A-12\", \"bert_en_wwm_uncased_L-24_H-1024_A-16\", \"bert_en_cased_L-24_H-1024_A-16\", \"bert_en_cased_L-12_H-768_A-12\", \"bert_zh_L-12_H-768_A-12\", \"bert_multi_cased_L-12_H-768_A-12\"]"
      ]
    },
    {
      "cell_type": "code",
      "execution_count": null,
      "metadata": {
        "id": "lo6479At4sP1"
      },
      "outputs": [],
      "source": [
1304
        "hub_encoder = hub.KerasLayer(f\"https://tfhub.dev/tensorflow/{hub_model_name}/3\",\n",
Mark Daoust's avatar
Mark Daoust committed
1305
        "                             trainable=True)\n",
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
        "\n",
        "print(f\"The Hub encoder has {len(hub_encoder.trainable_variables)} trainable variables\")"
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "id": "iTzF574wivQv"
      },
      "source": [
        "Test run it on a batch of data:"
      ]
    },
    {
      "cell_type": "code",
Mark Daoust's avatar
Mark Daoust committed
1321
      "execution_count": null,
1322
1323
1324
1325
1326
1327
      "metadata": {
        "id": "XEcYrCR45Uwo"
      },
      "outputs": [],
      "source": [
        "result = hub_encoder(\n",
1328
1329
1330
1331
        "    inputs=dict(\n",
        "        input_word_ids=glue_train['input_word_ids'][:10],\n",
        "        input_mask=glue_train['input_mask'][:10],\n",
        "        input_type_ids=glue_train['input_type_ids'][:10],),\n",
1332
1333
1334
        "    training=False,\n",
        ")\n",
        "\n",
1335
1336
        "print(\"Pooled output shape:\", result['pooled_output'].shape)\n",
        "print(\"Sequence output shape:\", result['sequence_output'].shape)"
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "id": "cjojn8SmLSRI"
      },
      "source": [
        "At this point it would be simple to add a classification head yourself.\n",
        "\n",
        "The `bert_models.classifier_model` function can also build a classifier onto the encoder from TensorFlow Hub:"
      ]
    },
    {
      "cell_type": "code",
Mark Daoust's avatar
Mark Daoust committed
1352
      "execution_count": null,
1353
1354
1355
1356
1357
      "metadata": {
        "id": "9nTDaApyLR70"
      },
      "outputs": [],
      "source": [
1358
1359
1360
1361
1362
1363
        "hub_classifier = nlp.modeling.models.BertClassifier(\n",
        "    bert_encoder,\n",
        "    num_classes=2,\n",
        "    dropout_rate=0.1,\n",
        "    initializer=tf.keras.initializers.TruncatedNormal(\n",
        "        stddev=0.02))"
1364
1365
1366
1367
1368
1369
1370
1371
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "id": "xMJX3wV0_v7I"
      },
      "source": [
1372
        "The one downside to loading this model from TFHub is that the structure of internal keras layers is not restored. So it's more difficult to inspect or modify the model. The `BertEncoder` model is now a single layer:"
1373
1374
1375
1376
      ]
    },
    {
      "cell_type": "code",
Mark Daoust's avatar
Mark Daoust committed
1377
      "execution_count": null,
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
      "metadata": {
        "id": "pD71dnvhM2QS"
      },
      "outputs": [],
      "source": [
        "tf.keras.utils.plot_model(hub_classifier, show_shapes=True, dpi=64)"
      ]
    },
    {
      "cell_type": "code",
Mark Daoust's avatar
Mark Daoust committed
1388
      "execution_count": null,
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
      "metadata": {
        "id": "nLZD-isBzNKi"
      },
      "outputs": [],
      "source": [
        "try:\n",
        "  tf.keras.utils.plot_model(hub_encoder, show_shapes=True, dpi=64)\n",
        "  assert False\n",
        "except Exception as e:\n",
        "  print(f\"{type(e).__name__}: {e}\")"
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "id": "ZxSqH0dNAgXV"
      },
      "source": [
        "\u003ca id=\"model_builder_functions\"\u003e\u003c/a\u003e\n",
        "\n",
        "### Low level model building\n",
        "\n",
1411
        "If you need a more control over the construction of the model it's worth noting that the `classifier_model` function used earlier is really just a thin wrapper over the `nlp.modeling.networks.BertEncoder` and `nlp.modeling.models.BertClassifier` classes. Just remember that if you start modifying the architecture it may not be correct or possible to reload the pre-trained checkpoint so you'll need to retrain from scratch."
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "id": "0cgABEwDj06P"
      },
      "source": [
        "Build the encoder:"
      ]
    },
    {
      "cell_type": "code",
Mark Daoust's avatar
Mark Daoust committed
1425
      "execution_count": null,
1426
1427
1428
1429
1430
      "metadata": {
        "id": "5r_yqhBFSVEM"
      },
      "outputs": [],
      "source": [
1431
        "bert_encoder_config = config_dict.copy()\n",
1432
1433
        "\n",
        "# You need to rename a few fields to make this work:\n",
1434
1435
1436
1437
1438
1439
1440
        "bert_encoder_config['attention_dropout_rate'] = bert_encoder_config.pop('attention_probs_dropout_prob')\n",
        "bert_encoder_config['activation'] = tf_utils.get_activation(bert_encoder_config.pop('hidden_act'))\n",
        "bert_encoder_config['dropout_rate'] = bert_encoder_config.pop('hidden_dropout_prob')\n",
        "bert_encoder_config['initializer'] = tf.keras.initializers.TruncatedNormal(\n",
        "          stddev=bert_encoder_config.pop('initializer_range'))\n",
        "bert_encoder_config['max_sequence_length'] = bert_encoder_config.pop('max_position_embeddings')\n",
        "bert_encoder_config['num_layers'] = bert_encoder_config.pop('num_hidden_layers')\n",
1441
        "\n",
1442
        "bert_encoder_config"
1443
1444
1445
1446
      ]
    },
    {
      "cell_type": "code",
Mark Daoust's avatar
Mark Daoust committed
1447
      "execution_count": null,
1448
1449
1450
1451
1452
      "metadata": {
        "id": "rIO8MI7LLijh"
      },
      "outputs": [],
      "source": [
1453
        "manual_encoder = nlp.modeling.networks.BertEncoder(**bert_encoder_config)"
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "id": "4a4tFSg9krRi"
      },
      "source": [
        "Restore the weights:"
      ]
    },
    {
      "cell_type": "code",
Mark Daoust's avatar
Mark Daoust committed
1467
      "execution_count": null,
1468
1469
1470
1471
1472
      "metadata": {
        "id": "X6N9NEqfXJCx"
      },
      "outputs": [],
      "source": [
1473
1474
        "checkpoint = tf.train.Checkpoint(encoder=manual_encoder)\n",
        "checkpoint.read(\n",
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
        "    os.path.join(gs_folder_bert, 'bert_model.ckpt')).assert_consumed()"
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "id": "1BPiPO4ykuwM"
      },
      "source": [
        "Test run it:"
      ]
    },
    {
      "cell_type": "code",
Mark Daoust's avatar
Mark Daoust committed
1489
      "execution_count": null,
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
      "metadata": {
        "id": "hlVdgJKmj389"
      },
      "outputs": [],
      "source": [
        "result = manual_encoder(my_examples, training=True)\n",
        "\n",
        "print(\"Sequence output shape:\", result[0].shape)\n",
        "print(\"Pooled output shape:\", result[1].shape)"
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "id": "nJMXvVgJkyBv"
      },
      "source": [
        "Wrap it in a classifier:"
      ]
    },
    {
      "cell_type": "code",
Mark Daoust's avatar
Mark Daoust committed
1512
      "execution_count": null,
1513
1514
1515
1516
1517
1518
1519
1520
      "metadata": {
        "id": "tQX57GJ6wkAb"
      },
      "outputs": [],
      "source": [
        "manual_classifier = nlp.modeling.models.BertClassifier(\n",
        "        bert_encoder,\n",
        "        num_classes=2,\n",
1521
1522
        "        dropout_rate=bert_encoder_config['dropout_rate'],\n",
        "        initializer=bert_encoder_config['initializer'])"
1523
1524
1525
1526
      ]
    },
    {
      "cell_type": "code",
Mark Daoust's avatar
Mark Daoust committed
1527
      "execution_count": null,
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
      "metadata": {
        "id": "kB-nBWhQk0dS"
      },
      "outputs": [],
      "source": [
        "manual_classifier(my_examples, training=True).numpy()"
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "id": "E6AJlOSyIO1L"
      },
      "source": [
        "\u003ca id=\"optiizer_schedule\"\u003e\u003c/a\u003e\n",
        "\n",
        "### Optimizers and schedules\n",
        "\n",
        "The optimizer used to train the model was created using the `nlp.optimization.create_optimizer` function:"
      ]
    },
    {
      "cell_type": "code",
Mark Daoust's avatar
Mark Daoust committed
1551
      "execution_count": null,
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
      "metadata": {
        "id": "28Dv3BPRlFTD"
      },
      "outputs": [],
      "source": [
        "optimizer = nlp.optimization.create_optimizer(\n",
        "    2e-5, num_train_steps=num_train_steps, num_warmup_steps=warmup_steps)"
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "id": "LRjcHr0UlT8c"
      },
      "source": [
        "That high level wrapper sets up the learning rate schedules and the optimizer.\n",
        "\n",
        "The base learning rate schedule used here is a linear decay to zero over the training run:"
      ]
    },
    {
      "cell_type": "code",
Mark Daoust's avatar
Mark Daoust committed
1574
      "execution_count": null,
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
      "metadata": {
        "id": "MHY8K6kDngQn"
      },
      "outputs": [],
      "source": [
        "epochs = 3\n",
        "batch_size = 32\n",
        "eval_batch_size = 32\n",
        "\n",
        "train_data_size = len(glue_train_labels)\n",
        "steps_per_epoch = int(train_data_size / batch_size)\n",
        "num_train_steps = steps_per_epoch * epochs"
      ]
    },
    {
      "cell_type": "code",
Mark Daoust's avatar
Mark Daoust committed
1591
      "execution_count": null,
1592
      "metadata": {
1593
        "collapsed": true,
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
        "id": "wKIcSprulu3P"
      },
      "outputs": [],
      "source": [
        "decay_schedule = tf.keras.optimizers.schedules.PolynomialDecay(\n",
        "      initial_learning_rate=2e-5,\n",
        "      decay_steps=num_train_steps,\n",
        "      end_learning_rate=0)\n",
        "\n",
        "plt.plot([decay_schedule(n) for n in range(num_train_steps)])"
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "id": "IMTC_gfAl_PZ"
      },
      "source": [
        "This, in turn is wrapped in a `WarmUp` schedule that linearly increases the learning rate to the target value over the first 10% of training:"
      ]
    },
    {
      "cell_type": "code",
Mark Daoust's avatar
Mark Daoust committed
1617
      "execution_count": null,
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
      "metadata": {
        "id": "YRt3VTmBmCBY"
      },
      "outputs": [],
      "source": [
        "warmup_steps = num_train_steps * 0.1\n",
        "\n",
        "warmup_schedule = nlp.optimization.WarmUp(\n",
        "        initial_learning_rate=2e-5,\n",
        "        decay_schedule_fn=decay_schedule,\n",
        "        warmup_steps=warmup_steps)\n",
        "\n",
        "# The warmup overshoots, because it warms up to the `initial_learning_rate`\n",
        "# following the original implementation. You can set\n",
        "# `initial_learning_rate=decay_schedule(warmup_steps)` if you don't like the\n",
        "# overshoot.\n",
        "plt.plot([warmup_schedule(n) for n in range(num_train_steps)])"
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "id": "l8D9Lv3Bn740"
      },
      "source": [
        "Then create the `nlp.optimization.AdamWeightDecay` using that schedule, configured for the BERT model:"
      ]
    },
    {
      "cell_type": "code",
Mark Daoust's avatar
Mark Daoust committed
1648
      "execution_count": null,
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
      "metadata": {
        "id": "2Hf2rpRXk89N"
      },
      "outputs": [],
      "source": [
        "optimizer = nlp.optimization.AdamWeightDecay(\n",
        "        learning_rate=warmup_schedule,\n",
        "        weight_decay_rate=0.01,\n",
        "        epsilon=1e-6,\n",
        "        exclude_from_weight_decay=['LayerNorm', 'layer_norm', 'bias'])"
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
1659
1660
      ]
    }
Chen Chen's avatar
Chen Chen committed
1661
1662
1663
1664
1665
  ],
  "metadata": {
    "accelerator": "GPU",
    "colab": {
      "collapsed_sections": [],
1666
1667
1668
1669
      "name": "fine_tuning_bert.ipynb",
      "private_outputs": true,
      "provenance": [],
      "toc_visible": true
Chen Chen's avatar
Chen Chen committed
1670
1671
1672
1673
1674
1675
1676
1677
1678
    },
    "kernelspec": {
      "display_name": "Python 3",
      "name": "python3"
    }
  },
  "nbformat": 4,
  "nbformat_minor": 0
}