xlnet.py 7.22 KB
Newer Older
Allen Wang's avatar
Allen Wang committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
# Copyright 2020 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
Allen Wang's avatar
Allen Wang committed
15
"""XLNet models."""
Allen Wang's avatar
Allen Wang committed
16
17
18
19
20
21
22
# pylint: disable=g-classes-have-attributes

from typing import Any, Mapping, Union

import tensorflow as tf

from official.nlp.modeling import layers
Allen Wang's avatar
Allen Wang committed
23
from official.nlp.modeling import networks
Allen Wang's avatar
Allen Wang committed
24
25
26
27
28
29
30
31
32
33


@tf.keras.utils.register_keras_serializable(package='Text')
class XLNetClassifier(tf.keras.Model):
  """Classifier model based on XLNet.

  This is an implementation of the network structure surrounding a
  Transformer-XL encoder as described in "XLNet: Generalized Autoregressive
  Pretraining for Language Understanding" (https://arxiv.org/abs/1906.08237).

Allen Wang's avatar
Allen Wang committed
34
35
36
  Note: This model does not use utilize the memory mechanism used in the
  original XLNet Classifier.

Allen Wang's avatar
Allen Wang committed
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
  Arguments:
    network: An XLNet/Transformer-XL based network. This network should output a
      sequence output and list of `state` tensors.
    num_classes: Number of classes to predict from the classification network.
    initializer: The initializer (if any) to use in the classification networks.
      Defaults to a RandomNormal initializer.
    summary_type: Method used to summarize a sequence into a compact vector.
    dropout_rate: The dropout probability of the cls head.
  """

  def __init__(
      self,
      network: Union[tf.keras.layers.Layer, tf.keras.Model],
      num_classes: int,
      initializer: tf.keras.initializers.Initializer = 'random_normal',
      summary_type: str = 'last',
      dropout_rate: float = 0.1,
      **kwargs):
    super().__init__(**kwargs)
    self._network = network
    self._initializer = initializer
    self._summary_type = summary_type
    self._num_classes = num_classes
    self._config = {
        'network': network,
        'initializer': initializer,
        'num_classes': num_classes,
        'summary_type': summary_type,
        'dropout_rate': dropout_rate,
    }

    if summary_type == 'last':
      cls_token_idx = -1
    elif summary_type == 'first':
      cls_token_idx = 0
    else:
      raise ValueError('Invalid summary type provided: %s.' % summary_type)

    self.classifier = layers.ClassificationHead(
Allen Wang's avatar
Allen Wang committed
76
        inner_dim=network.get_config()['hidden_size'],
Allen Wang's avatar
Allen Wang committed
77
78
79
80
81
82
83
        num_classes=num_classes,
        initializer=initializer,
        dropout_rate=dropout_rate,
        cls_token_idx=cls_token_idx,
        name='sentence_prediction')

  def call(self, inputs: Mapping[str, Any]):
Allen Wang's avatar
Allen Wang committed
84
85
86
    input_ids = inputs['input_word_ids']
    segment_ids = inputs['input_type_ids']
    input_mask = tf.cast(inputs['input_mask'], tf.float32)
Allen Wang's avatar
Allen Wang committed
87
88
    state = inputs.get('mems', None)

Allen Wang's avatar
Allen Wang committed
89
    attention_output, _ = self._network(
Allen Wang's avatar
Allen Wang committed
90
91
92
93
94
95
96
        input_ids=input_ids,
        segment_ids=segment_ids,
        input_mask=input_mask,
        state=state)

    logits = self.classifier(attention_output)

Allen Wang's avatar
Allen Wang committed
97
    return logits
Allen Wang's avatar
Allen Wang committed
98
99
100
101
102
103
104

  def get_config(self):
    return self._config

  @classmethod
  def from_config(cls, config, custom_objects=None):
    return cls(**config)
Allen Wang's avatar
Allen Wang committed
105

Allen Wang's avatar
Allen Wang committed
106
107
108
109
110
111
112
113
  @property
  def checkpoint_items(self):
    items = dict(encoder=self._network)
    if hasattr(self.classifier, 'checkpoint_items'):
      for key, item in self.classifier.checkpoint_items.items():
        items['.'.join([self.classifier.name, key])] = item
    return items

Allen Wang's avatar
Allen Wang committed
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129

@tf.keras.utils.register_keras_serializable(package='Text')
class XLNetSpanLabeler(tf.keras.Model):
  """Span labeler model based on XLNet.

  This is an implementation of the network structure surrounding a
  Transformer-XL encoder as described in "XLNet: Generalized Autoregressive
  Pretraining for Language Understanding" (https://arxiv.org/abs/1906.08237).

  Arguments:
    network: A transformer network. This network should output a sequence output
      and a classification output. Furthermore, it should expose its embedding
      table via a "get_embedding_table" method.
    start_n_top: Beam size for span start.
    end_n_top: Beam size for span end.
    dropout_rate: The dropout rate for the span labeling layer.
Allen Wang's avatar
Allen Wang committed
130
    span_labeling_activation: The activation for the span labeling head.
Allen Wang's avatar
Allen Wang committed
131
132
133
134
135
136
137
    initializer: The initializer (if any) to use in the span labeling network.
      Defaults to a Glorot uniform initializer.
  """

  def __init__(
      self,
      network: Union[tf.keras.layers.Layer, tf.keras.Model],
Allen Wang's avatar
Allen Wang committed
138
139
140
      start_n_top: int = 5,
      end_n_top: int = 5,
      dropout_rate: float = 0.1,
Allen Wang's avatar
Allen Wang committed
141
142
143
144
145
146
147
148
149
150
151
152
      span_labeling_activation: tf.keras.initializers.Initializer = 'tanh',
      initializer: tf.keras.initializers.Initializer = 'glorot_uniform',
      **kwargs):
    super().__init__(**kwargs)
    self._config = {
        'network': network,
        'start_n_top': start_n_top,
        'end_n_top': end_n_top,
        'dropout_rate': dropout_rate,
        'span_labeling_activation': span_labeling_activation,
        'initializer': initializer,
    }
Allen Wang's avatar
Allen Wang committed
153
154
155
156
157
158
159
160
161
    network_config = network.get_config()
    try:
      input_width = network_config['inner_size']
      self._xlnet_base = True
    except KeyError:
      # BertEncoder uses 'intermediate_size' due to legacy naming.
      input_width = network_config['intermediate_size']
      self._xlnet_base = False

Allen Wang's avatar
Allen Wang committed
162
163
164
165
166
167
168
    self._network = network
    self._initializer = initializer
    self._start_n_top = start_n_top
    self._end_n_top = end_n_top
    self._dropout_rate = dropout_rate
    self._activation = span_labeling_activation
    self.span_labeling = networks.XLNetSpanLabeling(
Allen Wang's avatar
Allen Wang committed
169
        input_width=input_width,
Allen Wang's avatar
Allen Wang committed
170
171
172
173
174
175
176
        start_n_top=self._start_n_top,
        end_n_top=self._end_n_top,
        activation=self._activation,
        dropout_rate=self._dropout_rate,
        initializer=self._initializer)

  def call(self, inputs: Mapping[str, Any]):
Allen Wang's avatar
Allen Wang committed
177
178
    input_word_ids = inputs['input_word_ids']
    input_type_ids = inputs['input_type_ids']
Allen Wang's avatar
Allen Wang committed
179
    input_mask = inputs['input_mask']
Allen Wang's avatar
Allen Wang committed
180
181
182
    class_index = inputs['class_index']
    paragraph_mask = inputs['paragraph_mask']
    start_positions = inputs.get('start_positions', None)
Allen Wang's avatar
Allen Wang committed
183

Allen Wang's avatar
Allen Wang committed
184
185
186
187
188
189
190
191
192
193
194
195
    if self._xlnet_base:
      attention_output, _ = self._network(
          input_ids=input_word_ids,
          segment_ids=input_type_ids,
          input_mask=input_mask)
    else:
      network_output_dict = self._network(dict(
          input_word_ids=input_word_ids,
          input_type_ids=input_type_ids,
          input_mask=input_mask))
      attention_output = network_output_dict['sequence_output']

Allen Wang's avatar
Allen Wang committed
196
197
198
    outputs = self.span_labeling(
        sequence_data=attention_output,
        class_index=class_index,
Allen Wang's avatar
Allen Wang committed
199
        paragraph_mask=paragraph_mask,
Allen Wang's avatar
Allen Wang committed
200
        start_positions=start_positions)
Allen Wang's avatar
Allen Wang committed
201
202
203
204
205
    return outputs

  @property
  def checkpoint_items(self):
    return dict(encoder=self._network)
Allen Wang's avatar
Allen Wang committed
206
207
208
209
210
211
212
213

  def get_config(self):
    return self._config

  @classmethod
  def from_config(cls, config, custom_objects=None):
    return cls(**config)