controller.py 21.3 KB
Newer Older
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
1
# Copyright 2022 The Orbit Authors. All Rights Reserved.
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
2
3
4
5
6
7
8
9
10
11
12
13
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
Hongkun Yu's avatar
Hongkun Yu committed
14

Dan Holtmann-Rice's avatar
Dan Holtmann-Rice committed
15
"""Provides a `Controller` class for managing the outer training loop."""
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
16

Dan Holtmann-Rice's avatar
Dan Holtmann-Rice committed
17
import pprint
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
18
import time
Dan Holtmann-Rice's avatar
Dan Holtmann-Rice committed
19

Ron Shapiro's avatar
Ron Shapiro committed
20
from typing import Callable, Iterable, Optional, Union
Dan Holtmann-Rice's avatar
Dan Holtmann-Rice committed
21

A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
22
from absl import logging
Dan Holtmann-Rice's avatar
Dan Holtmann-Rice committed
23

A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
24
25
26
27
28
29
from orbit import runner
from orbit import utils

import tensorflow as tf


Dan Holtmann-Rice's avatar
Dan Holtmann-Rice committed
30
def _log(message: str):
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
31
32
33
34
35
  """Logs `message` to the `info` log, and also prints to stdout."""
  logging.info(message)
  print(message)


Dan Holtmann-Rice's avatar
Dan Holtmann-Rice committed
36
37
38
39
40
41
42
43
44
45
46
47
48
logging.ABSLLogger.register_frame_to_skip(__file__, _log.__name__)


def _format_output(output, indent=4):
  """Formats `output`, either on one line, or indented across multiple lines."""
  formatted = pprint.pformat(output)
  lines = formatted.splitlines()
  if len(lines) == 1:
    return formatted
  lines = [" " * indent + line for line in lines]
  return "\n" + "\n".join(lines)


Dan Holtmann-Rice's avatar
Dan Holtmann-Rice committed
49
50
51
Action = Callable[[runner.Output], None]


Hongkun Yu's avatar
Hongkun Yu committed
52
class Controller:
Dan Holtmann-Rice's avatar
Dan Holtmann-Rice committed
53
54
55
56
57
58
  """Class that controls the outer loop of model training and evaluation.

  Orbit divides training and evaluation into "inner" and "outer" loops. Inner
  loops are implemented by users in the form of `AbstractTrainer` and
  `AbstractEvaluator` subclasses, and define how to run a given number of
  training or evaluation steps. The outer loop is provided by this `Controller`,
Dan Holtmann-Rice's avatar
Dan Holtmann-Rice committed
59
60
61
  and interleaves calls to the user-provided inner loops with additional actions
  such as saving checkpoints, running evaluations, writing summaries, as well as
  (optionally) user provided `Action`s (see below).
Dan Holtmann-Rice's avatar
Dan Holtmann-Rice committed
62
63
64
65
66
67
68
69
70
71
72
73
74

  There are four top-level "outer loops" provided:

    - `train`, which trains until a specified number of global steps is reached;
    - `evaluate`, for one-off model evaluation;
    - `train_and_evaluate`, for interleaved training and evaluation;
    - `evaluate_continuously`, for monitoring a given directory and running
      evaluations on new model checkpoints.

  While this class attempts to provide out-of-the-box solutions for common
  training and evaluation use cases, the internal details and method
  implementations are also intended to be simple enough to make subclassing or
  other custom outer loop implementations easy to achieve.
Dan Holtmann-Rice's avatar
Dan Holtmann-Rice committed
75
76

  Some additional customization can be achieved by supplying `train_actions` or
Ron Shapiro's avatar
Ron Shapiro committed
77
78
79
80
81
82
83
  `eval_actions` when constructing the `Controller`. Actions arbitrary callables
  that are applied by the `Controller` to the output of train steps (after each
  inner loop of `steps_per_loop` steps) or an evaluation. This provides a hook
  mechanism, enabling things like reporting metrics to Vizier, model exporting,
  additional logging, etc. See the `orbit.actions` package for a small handful
  of predefined actions and some utility classes that may be useful in defining
  your own.
Dan Holtmann-Rice's avatar
Dan Holtmann-Rice committed
84
  """
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
85
86
87

  def __init__(
      self,
88
89
      *,  # Makes all args keyword only.
      global_step: tf.Variable,
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
90
91
      trainer: Optional[runner.AbstractTrainer] = None,
      evaluator: Optional[runner.AbstractEvaluator] = None,
92
      strategy: Optional[tf.distribute.Strategy] = None,
Dan Holtmann-Rice's avatar
Dan Holtmann-Rice committed
93
      # Actions
Ron Shapiro's avatar
Ron Shapiro committed
94
95
      train_actions: Optional[Iterable[Action]] = None,
      eval_actions: Optional[Iterable[Action]] = None,
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
96
97
98
99
100
      # Train related
      steps_per_loop: Optional[int] = None,
      checkpoint_manager: Optional[tf.train.CheckpointManager] = None,
      # Summary related
      summary_interval: Optional[int] = None,
Dan Holtmann-Rice's avatar
Dan Holtmann-Rice committed
101
      summary_dir: Optional[str] = None,
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
102
      # Evaluation related
Dan Holtmann-Rice's avatar
Dan Holtmann-Rice committed
103
104
      eval_summary_dir: Optional[str] = None,
  ):
Dan Holtmann-Rice's avatar
Dan Holtmann-Rice committed
105
106
107
108
109
    """Initializes a `Controller` instance.

    Note that if `checkpoint_manager` is provided and there are checkpoints in
    the associated model directory, the model will be restored from the most
    recent checkpoint during this `__init__` method.
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
110
111

    Args:
Dan Holtmann-Rice's avatar
Dan Holtmann-Rice committed
112
113
114
115
116
117
118
119
120
      global_step: An integer `tf.Variable` storing the global training step
        number. Usually this can be obtained from the `iterations` property of
        the model's optimizer (e.g. `trainer.optimizer.iterations`). In cases
        where multiple optimizers are used, or if one model "step" corresponds
        to more than one update to model parameters, users can create and
        increment their own global step variable as well. In this case it is
        recommended to create the `tf.Variable` inside the distribution strategy
        scope, with `aggregation=tf.VariableAggregation.ONLY_FIRST_REPLICA` (see
        also `orbit.utils.create_global_step()`).
121
122
123
124
125
126
127
      trainer: An instance of `orbit.AbstractTrainer`, which implements the
        inner training loop.
      evaluator: An instance of `orbit.AbstractEvaluator`, which implements
        evaluation.
      strategy: An instance of `tf.distribute.Strategy`. If not provided, the
        strategy will be initialized from the current in-scope strategy using
        `tf.distribute.get_strategy()`.
Ron Shapiro's avatar
Ron Shapiro committed
128
129
130
131
132
      train_actions: Optional `orbit.Action`s to call after each block of
        `steps_per_loop` training steps are run. These will be called with the
        output of `trainer.train`.
      eval_actions: Optional `orbit.Action`s to call after each evaluation.
        These will be called with the output of `evaluator.evaluate`.
Dan Holtmann-Rice's avatar
Dan Holtmann-Rice committed
133
134
135
136
137
138
139
      steps_per_loop: The number of steps to run in each inner loop of training
        (passed as the `num_steps` parameter of `trainer.train`).
      checkpoint_manager: An instance of `tf.train.CheckpointManager`. If
        provided and there are checkpoints in the associated model directory,
        the model will be restored from the most recent checkpoint inside this
        `__init__` method. If not provided, the `Controller` will not
        automatically save to or restore from checkpoints.
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
140
      summary_interval: Step interval for training summaries. Note that this
Dan Holtmann-Rice's avatar
Dan Holtmann-Rice committed
141
142
143
144
145
146
147
148
149
150
151
        argument only applies to `tf.summary` calls inside the `trainer.train`
        function. Summaries written by the `Controller` (specifically
        "steps_per_second" and output from the `trainer.train` method) will
        always be enabled unless the `summary_dir` parameter is `None`. If set,
        the value must be divisible by `steps_per_loop`.
      summary_dir: The directory to write summaries to. To use the same
        directory as for checkpointing, pass `checkpoint_manager.directory`. If
        `None`, no training summaries will be written.
      eval_summary_dir: The directory to write eval summaries to. If `None`, it
        will be set to `summary_dir`. If both `summary_dir` and
        `eval_summary_dir` are `None`, no eval summaries will be written.
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
152
153

    Raises:
Dan Holtmann-Rice's avatar
Dan Holtmann-Rice committed
154
      ValueError: If both `trainer` and `evaluator` are `None`.
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
155
      ValueError: If `steps_per_loop` is not a positive integer.
Dan Holtmann-Rice's avatar
Dan Holtmann-Rice committed
156
157
      ValueError: If `summary_interval` is not a positive integer or is not
        divisible by `steps_per_loop`.
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
158
159
    """
    if trainer is None and evaluator is None:
Dan Holtmann-Rice's avatar
Dan Holtmann-Rice committed
160
      raise ValueError("`trainer` and `evaluator` should not both be `None`.")
Dan Holtmann-Rice's avatar
Dan Holtmann-Rice committed
161

A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
162
163
    if trainer is not None:
      if steps_per_loop is None:
Dan Holtmann-Rice's avatar
Dan Holtmann-Rice committed
164
165
166
167
168
        raise ValueError(
            "`steps_per_loop` is required when `trainer` is provided.")
      elif not isinstance(steps_per_loop, int) or steps_per_loop < 1:
        raise ValueError(
            f"`steps_per_loop` ({steps_per_loop}) must be a positive integer.")
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
169
170
171

      if summary_interval is not None:
        if summary_interval <= 0:
Dan Holtmann-Rice's avatar
Dan Holtmann-Rice committed
172
173
174
175
176
177
178
          raise ValueError(
              f"`summary_interval` ({summary_interval}) must be larger than 0.")
        elif summary_interval % steps_per_loop != 0:
          raise ValueError(
              f"`summary interval` ({summary_interval}) must be a multiple "
              f"of `steps_per_loop` ({steps_per_loop}).")

179
    if not isinstance(global_step, tf.Variable):
Dan Holtmann-Rice's avatar
Dan Holtmann-Rice committed
180
      raise ValueError("`global_step` must be a `tf.Variable`.")
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
181
182
183
184
185
186

    self.trainer = trainer
    self.evaluator = evaluator

    self.strategy = strategy or tf.distribute.get_strategy()

Ron Shapiro's avatar
Ron Shapiro committed
187
188
    self.train_actions = () if train_actions is None else tuple(train_actions)
    self.eval_actions = () if eval_actions is None else tuple(eval_actions)
Dan Holtmann-Rice's avatar
Dan Holtmann-Rice committed
189

A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
    self.global_step = global_step
    self.checkpoint_manager = checkpoint_manager

    if self.trainer is not None:
      self.step_timer = None
      self.steps_per_loop = steps_per_loop
      self.summary_interval = summary_interval
      self.summary_manager = utils.SummaryManager(
          summary_dir, tf.summary.scalar, global_step=self.global_step)

    if self.evaluator is not None:
      eval_summary_dir = eval_summary_dir or summary_dir
      if eval_summary_dir == summary_dir and self.trainer is not None:
        # Reuse the summary writer if train and evaluation summary directory
        # are the same.
        self.eval_summary_manager = self.summary_manager
      else:
        self.eval_summary_manager = utils.SummaryManager(
            eval_summary_dir, tf.summary.scalar, global_step=self.global_step)

210
    tf.summary.experimental.set_step(self.global_step)
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
211
212
213

    # Restores the model if needed.
    if self.checkpoint_manager is not None:
214
215
      restored_path = self.restore_checkpoint()
      if restored_path:
Dan Holtmann-Rice's avatar
Dan Holtmann-Rice committed
216
        _log(f"restored from checkpoint: {restored_path}")
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
217
218

  def train(self, steps: int, checkpoint_at_completion: bool = True):
Dan Holtmann-Rice's avatar
Dan Holtmann-Rice committed
219
    """Runs training until the specified global step count has been reached.
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
220

Dan Holtmann-Rice's avatar
Dan Holtmann-Rice committed
221
222
223
224
    This method makes calls to `self.trainer.train()` until the global step
    count is equal to `steps`. It will additionally save checkpoints (if a
    `CheckpointManager` was passed to `Controller.__init__`) and summarize
    training output (if `summary_dir` is set).
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
225
226
227
228

    Args:
      steps: The global step count to train up to.
      checkpoint_at_completion: Whether to save a checkpoint when this method
Dan Holtmann-Rice's avatar
Dan Holtmann-Rice committed
229
        returns (regardless of the checkpointing interval). Defaults to `True`.
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
230
    """
Dan Holtmann-Rice's avatar
Dan Holtmann-Rice committed
231
    self._require("trainer", for_method="train")
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
232
233

    # TODO(momernick): Support steps=None or -1 (training to exhaustion).
Dan Holtmann-Rice's avatar
Dan Holtmann-Rice committed
234
235
    current_step = self.global_step.numpy()  # Cache, since this is expensive.
    _log(f"train | step: {current_step: 6d} | training until step {steps}...")
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
236
237
238
239
240
    while current_step < steps:
      # Calculates steps to run for the next train loop.
      num_steps = min(steps - current_step, self.steps_per_loop)
      self._train_n_steps(num_steps)
      self._maybe_save_checkpoint()
Dan Holtmann-Rice's avatar
Dan Holtmann-Rice committed
241
      current_step = self.global_step.numpy()
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
242
243

    if checkpoint_at_completion:
Dan Holtmann-Rice's avatar
Dan Holtmann-Rice committed
244
      self._maybe_save_checkpoint(check_interval=False)
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
245

Dan Holtmann-Rice's avatar
Dan Holtmann-Rice committed
246
247
  def evaluate(self, steps: int = -1) -> Optional[runner.Output]:
    """Runs evaluation for the given number of steps.
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
248

Dan Holtmann-Rice's avatar
Dan Holtmann-Rice committed
249
250
    This method calls `self.evaluator.evaluate(steps)`, then writes the returned
    summaries (if any).
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
251
252

    Args:
Dan Holtmann-Rice's avatar
Dan Holtmann-Rice committed
253
254
255
256
      steps: The number of evaluation steps to run. The value `-1` is reserved
        as a special sentinel to indicate a "complete" evaluation that runs
        until the underlying dataset is exhausted. Support for this is dependent
        on the specific `evaluator` being used.
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
257

Simon Kornblith's avatar
Simon Kornblith committed
258
    Returns:
Dan Holtmann-Rice's avatar
Dan Holtmann-Rice committed
259
      The evaluation results as a dictionary mapping names to NumPy values.
Simon Kornblith's avatar
Simon Kornblith committed
260

A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
261
    Raises:
Dan Holtmann-Rice's avatar
Dan Holtmann-Rice committed
262
263
264
      ValueError: If `evaluator` was not provided to `Controller.__init__`.
      ValueError: If no checkpoint is present in `checkpoint_manager.directory`.
      ValueError: If `steps` is not a positive value or -1.
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
265
    """
Dan Holtmann-Rice's avatar
Dan Holtmann-Rice committed
266
    self._require("evaluator", for_method="evaluate")
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
267
268

    if steps > 0:
Dan Holtmann-Rice's avatar
Dan Holtmann-Rice committed
269
270
271
      steps_msg = f"running {steps} steps of evaluation..."
    elif steps == -1:
      steps_msg = "running complete evaluation..."
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
272
    else:
Dan Holtmann-Rice's avatar
Dan Holtmann-Rice committed
273
      raise ValueError(f"`steps` ({steps}) should be > 0, or == -1.")
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
274

Dan Holtmann-Rice's avatar
Dan Holtmann-Rice committed
275
276
    current_step = self.global_step.numpy()
    _log(f" eval | step: {current_step: 6d} | {steps_msg}")
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
277

Dan Holtmann-Rice's avatar
Dan Holtmann-Rice committed
278
279
280
281
282
    start = time.time()
    with self.eval_summary_manager.summary_writer().as_default():
      steps_tensor = tf.convert_to_tensor(steps, dtype=tf.int32)
      eval_output = self.evaluator.evaluate(steps_tensor)
    elapsed = time.time() - start
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
283

Dan Holtmann-Rice's avatar
Dan Holtmann-Rice committed
284
285
286
287
288
    eval_output = eval_output or {}
    for action in self.eval_actions:
      action(eval_output)
    eval_output = tf.nest.map_structure(utils.get_value, eval_output)

Dan Holtmann-Rice's avatar
Dan Holtmann-Rice committed
289
    _log(f" eval | step: {current_step: 6d} | "
290
         f"eval time: {elapsed: 6.1f} sec | "
Dan Holtmann-Rice's avatar
Dan Holtmann-Rice committed
291
         f"output: {_format_output(eval_output)}")
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
292

Dan Holtmann-Rice's avatar
Dan Holtmann-Rice committed
293
    self.eval_summary_manager.write_summaries(eval_output)
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
294
295
    self.eval_summary_manager.flush()

Dan Holtmann-Rice's avatar
Dan Holtmann-Rice committed
296
    return eval_output
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
297
298

  def train_and_evaluate(self,
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
299
                         train_steps: int,
300
                         eval_steps: int = -1,
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
301
                         eval_interval: Optional[int] = None) -> None:
Dan Holtmann-Rice's avatar
Dan Holtmann-Rice committed
302
    """Runs interleaved training and evaluation.
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
303

Dan Holtmann-Rice's avatar
Dan Holtmann-Rice committed
304
305
306
307
308
    This method interleaves calls to `self.train()` and `self.evaluate()`,
    training the model until the global step count equals `train_steps`, and
    running an evaluation for `eval_steps` every `eval_interval` training steps.
    In addition, this method will run a final evaluation at the end of the
    training sequence.
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
309
310
311

    Args:
      train_steps: The global step count to train up to.
312
      eval_steps: The number of steps to run during an evaluation. If -1, this
Dan Holtmann-Rice's avatar
Dan Holtmann-Rice committed
313
314
315
316
        method will evaluate over the entire evaluation dataset.
      eval_interval: The number of training steps to run between evaluations. If
        set, training will always stop every `eval_interval` steps, even if this
        results in a shorter inner loop than specified by `steps_per_loop`
Ruoxin Sang's avatar
Ruoxin Sang committed
317
318
        setting. If None, evaluation will only be performed after training is
        complete.
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
319
320
321
322

    Raises:
      ValueError: If eval_interval is not a multiple of self.steps_per_loop.
    """
Dan Holtmann-Rice's avatar
Dan Holtmann-Rice committed
323
324
325
326
    self._require("trainer", for_method="train_and_evaluate")
    self._require("evaluator", for_method="train_and_evaluate")

    current_step = self.global_step.numpy()  # Cache, since this is expensive.
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
327
328
329
330
331
332
    eval_interval = eval_interval or (train_steps - current_step)
    while current_step < train_steps:
      interval = min(train_steps - current_step, eval_interval)
      num_steps = current_step + interval
      self.train(steps=num_steps, checkpoint_at_completion=False)
      self.evaluate(steps=eval_steps)
Dan Holtmann-Rice's avatar
Dan Holtmann-Rice committed
333
334
      current_step = self.global_step.numpy()
    self._maybe_save_checkpoint(check_interval=False)
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
335
336

  def evaluate_continuously(self,
337
                            steps: int = -1,
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
338
339
                            timeout: Optional[Union[int, float]] = None,
                            timeout_fn: Optional[Callable[[], bool]] = None):
Dan Holtmann-Rice's avatar
Dan Holtmann-Rice committed
340
    """Continuously monitors a directory and evaluates new checkpoints in it.
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
341
342
343
344
345
346

    This method continuously monitors a directory as specified by this
    Controller's CheckpointManager init arg and runs evaluation on the
    checkpoints found there.

    Args:
347
348
      steps: The number of steps to run when evaluating. If -1, this method will
        evaluate over the entire evaluation dataset.
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
349
350
351
352
353
354
355
356
357
358
      timeout: The maximum number of seconds to wait between checkpoints. See
        tf.train.checkpoints_iterator documentation.
      timeout_fn: Optional callable to call after a timeout. If the function
        returns True, then it means that no new checkpoints will be generated
        and the iterator will exit.

    Raises:
      ValueError: If no checkpoint found in `self.checkpoint_manager.directory`.
      ValueError: If `evaluator` was not provided as a controller init arg.
    """
Dan Holtmann-Rice's avatar
Dan Holtmann-Rice committed
359
360
361
    self._require("evaluator", for_method="evaluate_continuously")
    self._require("checkpoint_manager", for_method="evaluate_continuously")

A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
362
363
364
365
366
367
368
    for checkpoint_path in tf.train.checkpoints_iterator(
        self.checkpoint_manager.directory,
        timeout=timeout,
        timeout_fn=timeout_fn):
      self.restore_checkpoint(checkpoint_path)
      self.evaluate(steps)

Rebecca Chen's avatar
Rebecca Chen committed
369
  def restore_checkpoint(self, checkpoint_path: Optional[str] = None):
Dan Holtmann-Rice's avatar
Dan Holtmann-Rice committed
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
    """Restores the model from a checkpoint.

    Args:
      checkpoint_path: An optional string specifying the checkpoint path to
        restore from. If `None`, will restore from the most recent checkpoint
        (or initialize the model using a custom `init_fn` if no checkpoints can
        be found) using `self.checkpoint_manager.restore_or_initialize()`.

    Returns:
      The path to the restored checkpoint if a restore happened, or `None` if no
      restore occurred.
    """
    self._require("checkpoint_manager", for_method="restore_checkpoint")

    with self.strategy.scope():
      # Checkpoint restoring should be inside scope (b/139450638).
      if checkpoint_path is not None:
        _log(f"restoring model from {checkpoint_path}...")
        self.checkpoint_manager.checkpoint.restore(checkpoint_path)
      else:
        _log("restoring or initializing model...")
        checkpoint_path = self.checkpoint_manager.restore_or_initialize()

    if checkpoint_path is not None:
      _log(f"restored model from {checkpoint_path}.")
    else:
      _log("initialized model.")

    return checkpoint_path

  def save_checkpoint(self):
    """Saves the model to a checkpoint.

    This method will save a checkpoint containing the current state of the
    model.

    Raises:
      ValueError: If no `checkpoint_manager` was provided to
        `Controller.__init__`.
    """
    self._require("checkpoint_manager", for_method="save_checkpoint")
    self._maybe_save_checkpoint(check_interval=False)

A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
413
  def _train_n_steps(self, num_steps: int):
Dan Holtmann-Rice's avatar
Dan Holtmann-Rice committed
414
    """Runs training for `num_steps` steps.
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
415

Dan Holtmann-Rice's avatar
Dan Holtmann-Rice committed
416
417
418
    Also prints/logs updates about training progress, and summarizes training
    output (if output is returned from `self.trainer.train()`, and if
    `self.summary_dir` is set).
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
419
420

    Args:
Dan Holtmann-Rice's avatar
Dan Holtmann-Rice committed
421
      num_steps: An integer specifying how many steps of training to run.
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
422
423

    Raises:
Dan Holtmann-Rice's avatar
Dan Holtmann-Rice committed
424
425
      RuntimeError: If `global_step` is not properly incremented by `num_steps`
        after calling `self.trainer.train(num_steps)`.
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
426
427
428
429
430
    """
    if not self.step_timer:
      self.step_timer = StepTimer(self.global_step)
    current_step = self.global_step.numpy()

Ruoxin Sang's avatar
Ruoxin Sang committed
431
    with self.summary_manager.summary_writer().as_default():
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
432
433
      should_record = False  # Allows static optimization in no-summary cases.
      if self.summary_interval:
Dan Holtmann-Rice's avatar
Dan Holtmann-Rice committed
434
        # Create a predicate to determine when summaries should be written.
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
435
436
        should_record = lambda: (self.global_step % self.summary_interval == 0)
      with tf.summary.record_if(should_record):
Dan Holtmann-Rice's avatar
Dan Holtmann-Rice committed
437
438
439
440
441
442
        num_steps_tensor = tf.convert_to_tensor(num_steps, dtype=tf.int32)
        train_output = self.trainer.train(num_steps_tensor)

    # Verify that global_step was updated properly, then update current_step.
    expected_step = current_step + num_steps
    if self.global_step.numpy() != expected_step:
443
      message = (
Dan Holtmann-Rice's avatar
Dan Holtmann-Rice committed
444
445
446
          f"`trainer.train({num_steps})` did not update `global_step` by "
          f"{num_steps}. Old value was {current_step}, expected updated value "
          f"to be {expected_step}, but it was {self.global_step.numpy()}.")
447
      logging.warning(message)
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
448

Dan Holtmann-Rice's avatar
Dan Holtmann-Rice committed
449
450
451
452
453
    train_output = train_output or {}
    for action in self.train_actions:
      action(train_output)
    train_output = tf.nest.map_structure(utils.get_value, train_output)

454
    current_step = self.global_step.numpy()
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
455
    steps_per_second = self.step_timer.steps_per_second()
Dan Holtmann-Rice's avatar
Dan Holtmann-Rice committed
456
457
458
459
460
461
462
    _log(f"train | step: {current_step: 6d} | "
         f"steps/sec: {steps_per_second: 6.1f} | "
         f"output: {_format_output(train_output)}")

    train_output["steps_per_second"] = steps_per_second
    self.summary_manager.write_summaries(train_output)
    self.summary_manager.flush()
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
463

Dan Holtmann-Rice's avatar
Dan Holtmann-Rice committed
464
465
  def _maybe_save_checkpoint(self, check_interval: bool = True):
    """Conditionally saves a checkpoint.
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
466

Dan Holtmann-Rice's avatar
Dan Holtmann-Rice committed
467
468
469
    A checkpoint is saved if a `CheckpointManager` is available, and if the
    required number of steps has elapsed since the last checkpoint was saved
    (although this condition can be disabled by setting `check_interval=False`).
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
470
471

    Args:
Dan Holtmann-Rice's avatar
Dan Holtmann-Rice committed
472
473
474
475
      check_interval: Whether to check if the checkpoint interval has fully
        elapsed. If `False`, a checkpoint is saved regardless of the elapsed
        steps since the most recent checkpoint, unless no `checkpoint_manager`
        was provided to `Controller.__init__`.
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
476
477
478
479
480
481
482

    Returns:
      A boolean indicating whether a checkpoint was saved.
    """
    if self.checkpoint_manager and self.checkpoint_manager.checkpoint_interval:
      ckpt_path = self.checkpoint_manager.save(
          checkpoint_number=self.global_step.numpy(),
Dan Holtmann-Rice's avatar
Dan Holtmann-Rice committed
483
          check_interval=check_interval)
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
484
      if ckpt_path is not None:
Dan Holtmann-Rice's avatar
Dan Holtmann-Rice committed
485
        _log(f"saved checkpoint to {ckpt_path}.")
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
486
487
488
        return True
    return False

Dan Holtmann-Rice's avatar
Dan Holtmann-Rice committed
489
490
491
492
493
494
495
  def _require(self, attribute, for_method):
    """Utility method to raise an error if the given `attribute` is not set."""
    if getattr(self, attribute, None) is None:
      raise ValueError(
          f"`{attribute}` is not set. Pass `{attribute}` to "
          f"`Controller.__init__` before calling `{for_method}()`.")

A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
496

Hongkun Yu's avatar
Hongkun Yu committed
497
class StepTimer:
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
  """Utility class for measuring steps/second."""

  def __init__(self, step):
    self.step = step
    self.start()

  def start(self):
    self.last_iteration = self.step.numpy()
    self.last_time = time.time()

  def steps_per_second(self, restart=True):
    value = ((self.step.numpy() - self.last_iteration) /
             (time.time() - self.last_time))
    if restart:
      self.start()
    return value