mask_utils.py 6.81 KB
Newer Older
Pengchong Jin's avatar
Pengchong Jin committed
1
# Copyright 2018 The TensorFlow Authors. All Rights Reserved.
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Utility functions for segmentations."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

20
import math
21
22
23
24
import numpy as np
import cv2


Pengchong Jin's avatar
Pengchong Jin committed
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
def paste_instance_masks(masks,
                         detected_boxes,
                         image_height,
                         image_width):
  """Paste instance masks to generate the image segmentation results.

  Args:
    masks: a numpy array of shape [N, mask_height, mask_width] representing the
      instance masks w.r.t. the `detected_boxes`.
    detected_boxes: a numpy array of shape [N, 4] representing the reference
      bounding boxes.
    image_height: an integer representing the height of the image.
    image_width: an integer representing the width of the image.

  Returns:
    segms: a numpy array of shape [N, image_height, image_width] representing
      the instance masks *pasted* on the image canvas.
  """
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70

  def expand_boxes(boxes, scale):
    """Expands an array of boxes by a given scale."""
    # Reference: https://github.com/facebookresearch/Detectron/blob/master/detectron/utils/boxes.py#L227  # pylint: disable=line-too-long
    # The `boxes` in the reference implementation is in [x1, y1, x2, y2] form,
    # whereas `boxes` here is in [x1, y1, w, h] form
    w_half = boxes[:, 2] * .5
    h_half = boxes[:, 3] * .5
    x_c = boxes[:, 0] + w_half
    y_c = boxes[:, 1] + h_half

    w_half *= scale
    h_half *= scale

    boxes_exp = np.zeros(boxes.shape)
    boxes_exp[:, 0] = x_c - w_half
    boxes_exp[:, 2] = x_c + w_half
    boxes_exp[:, 1] = y_c - h_half
    boxes_exp[:, 3] = y_c + h_half

    return boxes_exp

  # Reference: https://github.com/facebookresearch/Detectron/blob/master/detectron/core/test.py#L812  # pylint: disable=line-too-long
  # To work around an issue with cv2.resize (it seems to automatically pad
  # with repeated border values), we manually zero-pad the masks by 1 pixel
  # prior to resizing back to the original image resolution. This prevents
  # "top hat" artifacts. We therefore need to expand the reference boxes by an
  # appropriate factor.
Pengchong Jin's avatar
Pengchong Jin committed
71
72
73
  _, mask_height, mask_width = masks.shape
  scale = max((mask_width + 2.0) / mask_width,
              (mask_height + 2.0) / mask_height)
74

Pengchong Jin's avatar
Pengchong Jin committed
75
  ref_boxes = expand_boxes(detected_boxes, scale)
76
  ref_boxes = ref_boxes.astype(np.int32)
Pengchong Jin's avatar
Pengchong Jin committed
77
  padded_mask = np.zeros((mask_height + 2, mask_width + 2), dtype=np.float32)
78
79
  segms = []
  for mask_ind, mask in enumerate(masks):
Pengchong Jin's avatar
Pengchong Jin committed
80
81
    im_mask = np.zeros((image_height, image_width), dtype=np.uint8)
    # Process mask inside bounding boxes.
82
83
84
85
86
87
88
89
90
91
92
    padded_mask[1:-1, 1:-1] = mask[:, :]

    ref_box = ref_boxes[mask_ind, :]
    w = ref_box[2] - ref_box[0] + 1
    h = ref_box[3] - ref_box[1] + 1
    w = np.maximum(w, 1)
    h = np.maximum(h, 1)

    mask = cv2.resize(padded_mask, (w, h))
    mask = np.array(mask > 0.5, dtype=np.uint8)

Pengchong Jin's avatar
Pengchong Jin committed
93
94
95
96
    x_0 = min(max(ref_box[0], 0), image_width)
    x_1 = min(max(ref_box[2] + 1, 0), image_width)
    y_0 = min(max(ref_box[1], 0), image_height)
    y_1 = min(max(ref_box[3] + 1, 0), image_height)
97
98
99
100
101
102
103
104
105
106
107

    im_mask[y_0:y_1, x_0:x_1] = mask[
        (y_0 - ref_box[1]):(y_1 - ref_box[1]),
        (x_0 - ref_box[0]):(x_1 - ref_box[0])
    ]
    segms.append(im_mask)

  segms = np.array(segms)
  assert masks.shape[0] == segms.shape[0]
  return segms

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192

def paste_instance_masks_v2(masks,
                            detected_boxes,
                            image_height,
                            image_width):
  """Paste instance masks to generate the image segmentation (v2).

  Args:
    masks: a numpy array of shape [N, mask_height, mask_width] representing the
      instance masks w.r.t. the `detected_boxes`.
    detected_boxes: a numpy array of shape [N, 4] representing the reference
      bounding boxes.
    image_height: an integer representing the height of the image.
    image_width: an integer representing the width of the image.

  Returns:
    segms: a numpy array of shape [N, image_height, image_width] representing
      the instance masks *pasted* on the image canvas.
  """
  _, mask_height, mask_width = masks.shape

  segms = []
  for i, mask in enumerate(masks):
    box = detected_boxes[i, :]
    xmin = box[0]
    ymin = box[1]
    xmax = xmin + box[2]
    ymax = ymin + box[3]

    # Sample points of the cropped mask w.r.t. the image grid.
    # Note that these coordinates may fall beyond the image.
    # Pixel clipping will happen after warping.
    xmin_int = int(math.floor(xmin))
    xmax_int = int(math.ceil(xmax))
    ymin_int = int(math.floor(ymin))
    ymax_int = int(math.ceil(ymax))

    alpha = box[2] / (1.0 * mask_width)
    beta = box[3] / (1.0 * mask_height)
    # pylint: disable=invalid-name
    # Transformation from mask pixel indices to image coordinate.
    M_mask_to_image = np.array(
        [[alpha, 0, xmin],
         [0, beta, ymin],
         [0, 0, 1]],
        dtype=np.float32)
    # Transformation from image to cropped mask coordinate.
    M_image_to_crop = np.array(
        [[1, 0, -xmin_int],
         [0, 1, -ymin_int],
         [0, 0, 1]],
        dtype=np.float32)
    M = np.dot(M_image_to_crop, M_mask_to_image)
    # Compensate the half pixel offset that OpenCV has in the
    # warpPerspective implementation: the top-left pixel is sampled
    # at (0,0), but we want it to be at (0.5, 0.5).
    M = np.dot(
        np.dot(
            np.array([[1, 0, -0.5],
                      [0, 1, -0.5],
                      [0, 0, 1]], np.float32),
            M),
        np.array([[1, 0, 0.5],
                  [0, 1, 0.5],
                  [0, 0, 1]], np.float32))
    # pylint: enable=invalid-name
    cropped_mask = cv2.warpPerspective(
        mask.astype(np.float32), M,
        (xmax_int - xmin_int, ymax_int - ymin_int))
    cropped_mask = np.array(cropped_mask > 0.5, dtype=np.uint8)

    img_mask = np.zeros((image_height, image_width))
    x0 = max(min(xmin_int, image_width), 0)
    x1 = max(min(xmax_int, image_width), 0)
    y0 = max(min(ymin_int, image_height), 0)
    y1 = max(min(ymax_int, image_height), 0)
    img_mask[y0:y1, x0:x1] = cropped_mask[
        (y0 - ymin_int):(y1 - ymin_int),
        (x0 - xmin_int):(x1 - xmin_int)]

    segms.append(img_mask)

  segms = np.array(segms)
  return segms