wide_deep.py 9.32 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
# Copyright 2017 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
田传武's avatar
田传武 committed
15
"""Example code for TensorFlow Wide & Deep Tutorial using tf.estimator API."""
16
17
18
19
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

20
import os
21
22
import shutil

23
24
from absl import app as absl_app
from absl import flags
Karmel Allison's avatar
Karmel Allison committed
25
import tensorflow as tf  # pylint: disable=g-bad-import-order
26

27
from official.utils.flags import core as flags_core
28
from official.utils.logs import hooks_helper
29
from official.utils.misc import model_helpers
30

31

32
33
34
35
36
37
38
39
40
41
_CSV_COLUMNS = [
    'age', 'workclass', 'fnlwgt', 'education', 'education_num',
    'marital_status', 'occupation', 'relationship', 'race', 'gender',
    'capital_gain', 'capital_loss', 'hours_per_week', 'native_country',
    'income_bracket'
]

_CSV_COLUMN_DEFAULTS = [[0], [''], [0], [''], [0], [''], [''], [''], [''], [''],
                        [0], [0], [0], [''], ['']]

42
43
44
45
_NUM_EXAMPLES = {
    'train': 32561,
    'validation': 16281,
}
Neal Wu's avatar
Neal Wu committed
46

47

48
49
50
LOSS_PREFIX = {'wide': 'linear/', 'deep': 'dnn/'}


51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
def define_wide_deep_flags():
  """Add supervised learning flags, as well as wide-deep model type."""
  flags_core.define_base()

  flags.adopt_module_key_flags(flags_core)

  flags.DEFINE_enum(
      name="model_type", short_name="mt", default="wide_deep",
      enum_values=['wide', 'deep', 'wide_deep'],
      help="Select model topology.")

  flags_core.set_defaults(data_dir='/tmp/census_data',
                          model_dir='/tmp/census_model',
                          train_epochs=40,
                          epochs_between_evals=2,
                          batch_size=40)


69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
def build_model_columns():
  """Builds a set of wide and deep feature columns."""
  # Continuous columns
  age = tf.feature_column.numeric_column('age')
  education_num = tf.feature_column.numeric_column('education_num')
  capital_gain = tf.feature_column.numeric_column('capital_gain')
  capital_loss = tf.feature_column.numeric_column('capital_loss')
  hours_per_week = tf.feature_column.numeric_column('hours_per_week')

  education = tf.feature_column.categorical_column_with_vocabulary_list(
      'education', [
          'Bachelors', 'HS-grad', '11th', 'Masters', '9th', 'Some-college',
          'Assoc-acdm', 'Assoc-voc', '7th-8th', 'Doctorate', 'Prof-school',
          '5th-6th', '10th', '1st-4th', 'Preschool', '12th'])

  marital_status = tf.feature_column.categorical_column_with_vocabulary_list(
      'marital_status', [
          'Married-civ-spouse', 'Divorced', 'Married-spouse-absent',
          'Never-married', 'Separated', 'Married-AF-spouse', 'Widowed'])

  relationship = tf.feature_column.categorical_column_with_vocabulary_list(
      'relationship', [
          'Husband', 'Not-in-family', 'Wife', 'Own-child', 'Unmarried',
          'Other-relative'])

  workclass = tf.feature_column.categorical_column_with_vocabulary_list(
      'workclass', [
          'Self-emp-not-inc', 'Private', 'State-gov', 'Federal-gov',
          'Local-gov', '?', 'Self-emp-inc', 'Without-pay', 'Never-worked'])

  # To show an example of hashing:
  occupation = tf.feature_column.categorical_column_with_hash_bucket(
      'occupation', hash_bucket_size=1000)

  # Transformations.
  age_buckets = tf.feature_column.bucketized_column(
      age, boundaries=[18, 25, 30, 35, 40, 45, 50, 55, 60, 65])

  # Wide columns and deep columns.
  base_columns = [
      education, marital_status, relationship, workclass, occupation,
      age_buckets,
  ]

  crossed_columns = [
      tf.feature_column.crossed_column(
          ['education', 'occupation'], hash_bucket_size=1000),
      tf.feature_column.crossed_column(
          [age_buckets, 'education', 'occupation'], hash_bucket_size=1000),
  ]

  wide_columns = base_columns + crossed_columns

  deep_columns = [
      age,
      education_num,
      capital_gain,
      capital_loss,
      hours_per_week,
      tf.feature_column.indicator_column(workclass),
      tf.feature_column.indicator_column(education),
      tf.feature_column.indicator_column(marital_status),
      tf.feature_column.indicator_column(relationship),
      # To show an example of embedding
      tf.feature_column.embedding_column(occupation, dimension=8),
  ]

  return wide_columns, deep_columns


def build_estimator(model_dir, model_type):
  """Build an estimator appropriate for the given model type."""
  wide_columns, deep_columns = build_model_columns()
  hidden_units = [100, 75, 50, 25]

  # Create a tf.estimator.RunConfig to ensure the model is run on CPU, which
  # trains faster than GPU for this model.
  run_config = tf.estimator.RunConfig().replace(
      session_config=tf.ConfigProto(device_count={'GPU': 0}))

  if model_type == 'wide':
    return tf.estimator.LinearClassifier(
        model_dir=model_dir,
        feature_columns=wide_columns,
        config=run_config)
  elif model_type == 'deep':
    return tf.estimator.DNNClassifier(
        model_dir=model_dir,
        feature_columns=deep_columns,
        hidden_units=hidden_units,
        config=run_config)
  else:
    return tf.estimator.DNNLinearCombinedClassifier(
        model_dir=model_dir,
        linear_feature_columns=wide_columns,
        dnn_feature_columns=deep_columns,
        dnn_hidden_units=hidden_units,
        config=run_config)


def input_fn(data_file, num_epochs, shuffle, batch_size):
  """Generate an input function for the Estimator."""
  assert tf.gfile.Exists(data_file), (
172
173
      '%s not found. Please make sure you have run data_download.py and '
      'set the --data_dir argument to the correct path.' % data_file)
Neal Wu's avatar
Neal Wu committed
174

175
176
177
178
179
180
181
182
  def parse_csv(value):
    print('Parsing', data_file)
    columns = tf.decode_csv(value, record_defaults=_CSV_COLUMN_DEFAULTS)
    features = dict(zip(_CSV_COLUMNS, columns))
    labels = features.pop('income_bracket')
    return features, tf.equal(labels, '>50K')

  # Extract lines from input files using the Dataset API.
183
  dataset = tf.data.TextLineDataset(data_file)
184

Neal Wu's avatar
Neal Wu committed
185
  if shuffle:
186
    dataset = dataset.shuffle(buffer_size=_NUM_EXAMPLES['train'])
Neal Wu's avatar
Neal Wu committed
187

188
189
  dataset = dataset.map(parse_csv, num_parallel_calls=5)

Neal Wu's avatar
Neal Wu committed
190
191
  # We call repeat after shuffling, rather than before, to prevent separate
  # epochs from blending together.
192
  dataset = dataset.repeat(num_epochs)
Neal Wu's avatar
Neal Wu committed
193
  dataset = dataset.batch(batch_size)
194
  return dataset
195

196

197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
def export_model(model, model_type, export_dir):
  """Export to SavedModel format.

  Args:
    model: Estimator object
    model_type: string indicating model type. "wide", "deep" or "wide_deep"
    export_dir: directory to export the model.
  """
  wide_columns, deep_columns = build_model_columns()
  if model_type == 'wide':
    columns = wide_columns
  elif model_type == 'deep':
    columns = deep_columns
  else:
    columns = wide_columns + deep_columns
  feature_spec = tf.feature_column.make_parse_example_spec(columns)
  example_input_fn = (
      tf.estimator.export.build_parsing_serving_input_receiver_fn(feature_spec))
  model.export_savedmodel(export_dir, example_input_fn)


218
219
220
221
222
223
224
def run_wide_deep(flags_obj):
  """Run Wide-Deep training and eval loop.

  Args:
    flags_obj: An object containing parsed flag values.
  """

225
  # Clean up the model directory if present
226
227
  shutil.rmtree(flags_obj.model_dir, ignore_errors=True)
  model = build_estimator(flags_obj.model_dir, flags_obj.model_type)
228

229
230
  train_file = os.path.join(flags_obj.data_dir, 'adult.data')
  test_file = os.path.join(flags_obj.data_dir, 'adult.test')
231

232
  # Train and evaluate the model every `flags.epochs_between_evals` epochs.
Karmel Allison's avatar
Karmel Allison committed
233
  def train_input_fn():
Katherine Wu's avatar
Katherine Wu committed
234
    return input_fn(
235
        train_file, flags_obj.epochs_between_evals, True, flags_obj.batch_size)
Karmel Allison's avatar
Karmel Allison committed
236
237

  def eval_input_fn():
238
    return input_fn(test_file, 1, False, flags_obj.batch_size)
Karmel Allison's avatar
Karmel Allison committed
239

240
  loss_prefix = LOSS_PREFIX.get(flags_obj.model_type, '')
241
  train_hooks = hooks_helper.get_train_hooks(
242
      flags_obj.hooks, batch_size=flags_obj.batch_size,
243
244
      tensors_to_log={'average_loss': loss_prefix + 'head/truediv',
                      'loss': loss_prefix + 'head/weighted_loss/Sum'})
245

246
  # Train and evaluate the model every `flags.epochs_between_evals` epochs.
247
  for n in range(flags_obj.train_epochs // flags_obj.epochs_between_evals):
Karmel Allison's avatar
Karmel Allison committed
248
249
    model.train(input_fn=train_input_fn, hooks=train_hooks)
    results = model.evaluate(input_fn=eval_input_fn)
250
251

    # Display evaluation metrics
252
    print('Results at epoch', (n + 1) * flags_obj.epochs_between_evals)
253
    print('-' * 60)
Neal Wu's avatar
Neal Wu committed
254

255
256
257
    for key in sorted(results):
      print('%s: %s' % (key, results[key]))

258
    if model_helpers.past_stop_threshold(
259
        flags_obj.stop_threshold, results['accuracy']):
260
261
      break

262
  # Export the model
263
264
  if flags_obj.export_dir is not None:
    export_model(model, flags_obj.model_type, flags_obj.export_dir)
265
266


267
268
269
270
def main(_):
  run_wide_deep(flags.FLAGS)


271
272
if __name__ == '__main__':
  tf.logging.set_verbosity(tf.logging.INFO)
273
274
  define_wide_deep_flags()
  absl_app.run(main)