imagenet_test.py 13.3 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
# Copyright 2017 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import unittest

Karmel Allison's avatar
Karmel Allison committed
22
import tensorflow as tf  # pylint: disable=g-bad-import-order
23
from absl import logging
24

25
from official.r1.resnet import imagenet_main
26
from official.utils.misc import keras_utils
27
from official.utils.testing import integration
28

29
logging.set_verbosity(logging.ERROR)
30

31
_BATCH_SIZE = 32
32
33
34
35
36
_LABEL_CLASSES = 1001


class BaseTest(tf.test.TestCase):

37
38
  _num_validation_images = None

39
40
41
42
  @classmethod
  def setUpClass(cls):  # pylint: disable=invalid-name
    super(BaseTest, cls).setUpClass()
    imagenet_main.define_imagenet_flags()
43
44
45

  def setUp(self):
    super(BaseTest, self).setUp()
46
47
    if keras_utils.is_v2_0:
      tf.compat.v1.disable_eager_execution()
48
49
    self._num_validation_images = imagenet_main.NUM_IMAGES['validation']
    imagenet_main.NUM_IMAGES['validation'] = 4
50

51
52
  def tearDown(self):
    super(BaseTest, self).tearDown()
53
    tf.io.gfile.rmtree(self.get_temp_dir())
54
    imagenet_main.NUM_IMAGES['validation'] = self._num_validation_images
55

56
  def _tensor_shapes_helper(self, resnet_size, resnet_version, dtype, with_gpu):
57
58
    """Checks the tensor shapes after each phase of the ResNet model."""
    def reshape(shape):
Karmel Allison's avatar
Karmel Allison committed
59
60
      """Returns the expected dimensions depending on if a GPU is being used."""

61
62
      # If a GPU is used for the test, the shape is returned (already in NCHW
      # form). When GPU is not used, the shape is converted to NHWC.
63
64
65
66
67
68
69
      if with_gpu:
        return shape
      return shape[0], shape[2], shape[3], shape[1]

    graph = tf.Graph()

    with graph.as_default(), self.test_session(
70
        graph=graph, use_gpu=with_gpu, force_gpu=with_gpu):
71
      model = imagenet_main.ImagenetModel(
72
          resnet_size=resnet_size,
73
          data_format='channels_first' if with_gpu else 'channels_last',
74
          resnet_version=resnet_version,
75
76
          dtype=dtype
      )
77
      inputs = tf.random.uniform([1, 224, 224, 3])
78
      output = model(inputs, training=True)
79

80
81
82
83
84
85
86
87
      initial_conv = graph.get_tensor_by_name('resnet_model/initial_conv:0')
      max_pool = graph.get_tensor_by_name('resnet_model/initial_max_pool:0')
      block_layer1 = graph.get_tensor_by_name('resnet_model/block_layer1:0')
      block_layer2 = graph.get_tensor_by_name('resnet_model/block_layer2:0')
      block_layer3 = graph.get_tensor_by_name('resnet_model/block_layer3:0')
      block_layer4 = graph.get_tensor_by_name('resnet_model/block_layer4:0')
      reduce_mean = graph.get_tensor_by_name('resnet_model/final_reduce_mean:0')
      dense = graph.get_tensor_by_name('resnet_model/final_dense:0')
88
89
90
91
92
93
94
95
96
97
98

      self.assertAllEqual(initial_conv.shape, reshape((1, 64, 112, 112)))
      self.assertAllEqual(max_pool.shape, reshape((1, 64, 56, 56)))

      # The number of channels after each block depends on whether we're
      # using the building_block or the bottleneck_block.
      if resnet_size < 50:
        self.assertAllEqual(block_layer1.shape, reshape((1, 64, 56, 56)))
        self.assertAllEqual(block_layer2.shape, reshape((1, 128, 28, 28)))
        self.assertAllEqual(block_layer3.shape, reshape((1, 256, 14, 14)))
        self.assertAllEqual(block_layer4.shape, reshape((1, 512, 7, 7)))
99
        self.assertAllEqual(reduce_mean.shape, reshape((1, 512, 1, 1)))
100
101
102
103
104
      else:
        self.assertAllEqual(block_layer1.shape, reshape((1, 256, 56, 56)))
        self.assertAllEqual(block_layer2.shape, reshape((1, 512, 28, 28)))
        self.assertAllEqual(block_layer3.shape, reshape((1, 1024, 14, 14)))
        self.assertAllEqual(block_layer4.shape, reshape((1, 2048, 7, 7)))
105
        self.assertAllEqual(reduce_mean.shape, reshape((1, 2048, 1, 1)))
106

107
108
      self.assertAllEqual(dense.shape, (1, _LABEL_CLASSES))
      self.assertAllEqual(output.shape, (1, _LABEL_CLASSES))
109

110
111
112
  def tensor_shapes_helper(self, resnet_size, resnet_version, with_gpu=False):
    self._tensor_shapes_helper(resnet_size=resnet_size,
                               resnet_version=resnet_version,
113
                               dtype=tf.float32, with_gpu=with_gpu)
114
115
    self._tensor_shapes_helper(resnet_size=resnet_size,
                               resnet_version=resnet_version,
116
117
                               dtype=tf.float16, with_gpu=with_gpu)

118
  def test_tensor_shapes_resnet_18_v1(self):
119
    self.tensor_shapes_helper(18, resnet_version=1)
120

121
  def test_tensor_shapes_resnet_18_v2(self):
122
    self.tensor_shapes_helper(18, resnet_version=2)
123

124
  def test_tensor_shapes_resnet_34_v1(self):
125
    self.tensor_shapes_helper(34, resnet_version=1)
126

127
  def test_tensor_shapes_resnet_34_v2(self):
128
    self.tensor_shapes_helper(34, resnet_version=2)
129

130
  def test_tensor_shapes_resnet_50_v1(self):
131
    self.tensor_shapes_helper(50, resnet_version=1)
132

133
  def test_tensor_shapes_resnet_50_v2(self):
134
    self.tensor_shapes_helper(50, resnet_version=2)
135
136

  def test_tensor_shapes_resnet_101_v1(self):
137
    self.tensor_shapes_helper(101, resnet_version=1)
138
139

  def test_tensor_shapes_resnet_101_v2(self):
140
    self.tensor_shapes_helper(101, resnet_version=2)
141
142

  def test_tensor_shapes_resnet_152_v1(self):
143
    self.tensor_shapes_helper(152, resnet_version=1)
144
145

  def test_tensor_shapes_resnet_152_v2(self):
146
    self.tensor_shapes_helper(152, resnet_version=2)
147
148

  def test_tensor_shapes_resnet_200_v1(self):
149
    self.tensor_shapes_helper(200, resnet_version=1)
150
151

  def test_tensor_shapes_resnet_200_v2(self):
152
    self.tensor_shapes_helper(200, resnet_version=2)
153
154
155

  @unittest.skipUnless(tf.test.is_built_with_cuda(), 'requires GPU')
  def test_tensor_shapes_resnet_18_with_gpu_v1(self):
156
    self.tensor_shapes_helper(18, resnet_version=1, with_gpu=True)
157
158
159

  @unittest.skipUnless(tf.test.is_built_with_cuda(), 'requires GPU')
  def test_tensor_shapes_resnet_18_with_gpu_v2(self):
160
    self.tensor_shapes_helper(18, resnet_version=2, with_gpu=True)
161
162
163

  @unittest.skipUnless(tf.test.is_built_with_cuda(), 'requires GPU')
  def test_tensor_shapes_resnet_34_with_gpu_v1(self):
164
    self.tensor_shapes_helper(34, resnet_version=1, with_gpu=True)
165
166
167

  @unittest.skipUnless(tf.test.is_built_with_cuda(), 'requires GPU')
  def test_tensor_shapes_resnet_34_with_gpu_v2(self):
168
    self.tensor_shapes_helper(34, resnet_version=2, with_gpu=True)
169
170

  @unittest.skipUnless(tf.test.is_built_with_cuda(), 'requires GPU')
171
  def test_tensor_shapes_resnet_50_with_gpu_v1(self):
172
    self.tensor_shapes_helper(50, resnet_version=1, with_gpu=True)
173
174

  @unittest.skipUnless(tf.test.is_built_with_cuda(), 'requires GPU')
175
  def test_tensor_shapes_resnet_50_with_gpu_v2(self):
176
    self.tensor_shapes_helper(50, resnet_version=2, with_gpu=True)
177
178

  @unittest.skipUnless(tf.test.is_built_with_cuda(), 'requires GPU')
179
  def test_tensor_shapes_resnet_101_with_gpu_v1(self):
180
    self.tensor_shapes_helper(101, resnet_version=1, with_gpu=True)
181
182

  @unittest.skipUnless(tf.test.is_built_with_cuda(), 'requires GPU')
183
  def test_tensor_shapes_resnet_101_with_gpu_v2(self):
184
    self.tensor_shapes_helper(101, resnet_version=2, with_gpu=True)
185
186

  @unittest.skipUnless(tf.test.is_built_with_cuda(), 'requires GPU')
187
  def test_tensor_shapes_resnet_152_with_gpu_v1(self):
188
    self.tensor_shapes_helper(152, resnet_version=1, with_gpu=True)
189
190

  @unittest.skipUnless(tf.test.is_built_with_cuda(), 'requires GPU')
191
  def test_tensor_shapes_resnet_152_with_gpu_v2(self):
192
    self.tensor_shapes_helper(152, resnet_version=2, with_gpu=True)
193

194
195
  @unittest.skipUnless(tf.test.is_built_with_cuda(), 'requires GPU')
  def test_tensor_shapes_resnet_200_with_gpu_v1(self):
196
    self.tensor_shapes_helper(200, resnet_version=1, with_gpu=True)
197
198
199

  @unittest.skipUnless(tf.test.is_built_with_cuda(), 'requires GPU')
  def test_tensor_shapes_resnet_200_with_gpu_v2(self):
200
    self.tensor_shapes_helper(200, resnet_version=2, with_gpu=True)
201

202
  def resnet_model_fn_helper(self, mode, resnet_version, dtype):
203
    """Tests that the EstimatorSpec is given the appropriate arguments."""
204
    tf.compat.v1.train.create_global_step()
205

Toby Boyd's avatar
Toby Boyd committed
206
    input_fn = imagenet_main.get_synth_input_fn(dtype)
207
    dataset = input_fn(True, '', _BATCH_SIZE)
208
    iterator = tf.compat.v1.data.make_initializable_iterator(dataset)
209
210
211
212
213
214
215
    features, labels = iterator.get_next()
    spec = imagenet_main.imagenet_model_fn(
        features, labels, mode, {
            'dtype': dtype,
            'resnet_size': 50,
            'data_format': 'channels_last',
            'batch_size': _BATCH_SIZE,
216
            'resnet_version': resnet_version,
217
            'loss_scale': 128 if dtype == tf.float16 else 1,
Zac Wellmer's avatar
Zac Wellmer committed
218
            'fine_tune': False,
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
        })

    predictions = spec.predictions
    self.assertAllEqual(predictions['probabilities'].shape,
                        (_BATCH_SIZE, _LABEL_CLASSES))
    self.assertEqual(predictions['probabilities'].dtype, tf.float32)
    self.assertAllEqual(predictions['classes'].shape, (_BATCH_SIZE,))
    self.assertEqual(predictions['classes'].dtype, tf.int64)

    if mode != tf.estimator.ModeKeys.PREDICT:
      loss = spec.loss
      self.assertAllEqual(loss.shape, ())
      self.assertEqual(loss.dtype, tf.float32)

    if mode == tf.estimator.ModeKeys.EVAL:
      eval_metric_ops = spec.eval_metric_ops
      self.assertAllEqual(eval_metric_ops['accuracy'][0].shape, ())
      self.assertAllEqual(eval_metric_ops['accuracy'][1].shape, ())
      self.assertEqual(eval_metric_ops['accuracy'][0].dtype, tf.float32)
      self.assertEqual(eval_metric_ops['accuracy'][1].dtype, tf.float32)
239

240
  def test_resnet_model_fn_train_mode_v1(self):
241
    self.resnet_model_fn_helper(tf.estimator.ModeKeys.TRAIN, resnet_version=1,
242
                                dtype=tf.float32)
243

244
  def test_resnet_model_fn_train_mode_v2(self):
245
    self.resnet_model_fn_helper(tf.estimator.ModeKeys.TRAIN, resnet_version=2,
246
                                dtype=tf.float32)
247
248

  def test_resnet_model_fn_eval_mode_v1(self):
249
    self.resnet_model_fn_helper(tf.estimator.ModeKeys.EVAL, resnet_version=1,
250
                                dtype=tf.float32)
251

252
  def test_resnet_model_fn_eval_mode_v2(self):
253
    self.resnet_model_fn_helper(tf.estimator.ModeKeys.EVAL, resnet_version=2,
254
                                dtype=tf.float32)
Karmel Allison's avatar
Karmel Allison committed
255

256
  def test_resnet_model_fn_predict_mode_v1(self):
257
    self.resnet_model_fn_helper(tf.estimator.ModeKeys.PREDICT, resnet_version=1,
258
                                dtype=tf.float32)
259

260
  def test_resnet_model_fn_predict_mode_v2(self):
261
    self.resnet_model_fn_helper(tf.estimator.ModeKeys.PREDICT, resnet_version=2,
262
                                dtype=tf.float32)
263

264
  def _test_imagenetmodel_shape(self, resnet_version):
Neal Wu's avatar
Neal Wu committed
265
266
267
    batch_size = 135
    num_classes = 246

268
269
    model = imagenet_main.ImagenetModel(
        50, data_format='channels_last', num_classes=num_classes,
270
        resnet_version=resnet_version)
271

272
    fake_input = tf.random.uniform([batch_size, 224, 224, 3])
273
274
275
276
277
    output = model(fake_input, training=True)

    self.assertAllEqual(output.shape, (batch_size, num_classes))

  def test_imagenetmodel_shape_v1(self):
278
    self._test_imagenetmodel_shape(resnet_version=1)
Neal Wu's avatar
Neal Wu committed
279

280
  def test_imagenetmodel_shape_v2(self):
281
    self._test_imagenetmodel_shape(resnet_version=2)
Neal Wu's avatar
Neal Wu committed
282

283
  def test_imagenet_end_to_end_synthetic_v1(self):
284
    integration.run_synthetic(
285
        main=imagenet_main.run_imagenet, tmp_root=self.get_temp_dir(),
286
287
        extra_flags=['-resnet_version', '1', '-batch_size', '4',
                     '--max_train_steps', '1']
288
    )
289
290

  def test_imagenet_end_to_end_synthetic_v2(self):
291
    integration.run_synthetic(
292
        main=imagenet_main.run_imagenet, tmp_root=self.get_temp_dir(),
293
294
        extra_flags=['-resnet_version', '2', '-batch_size', '4',
                     '--max_train_steps', '1']
295
    )
296
297

  def test_imagenet_end_to_end_synthetic_v1_tiny(self):
298
    integration.run_synthetic(
299
        main=imagenet_main.run_imagenet, tmp_root=self.get_temp_dir(),
300
        extra_flags=['-resnet_version', '1', '-batch_size', '4',
301
                     '-resnet_size', '18', '--max_train_steps', '1']
302
    )
303
304

  def test_imagenet_end_to_end_synthetic_v2_tiny(self):
305
    integration.run_synthetic(
306
        main=imagenet_main.run_imagenet, tmp_root=self.get_temp_dir(),
307
        extra_flags=['-resnet_version', '2', '-batch_size', '4',
308
                     '-resnet_size', '18', '--max_train_steps', '1']
309
    )
310
311

  def test_imagenet_end_to_end_synthetic_v1_huge(self):
312
    integration.run_synthetic(
313
        main=imagenet_main.run_imagenet, tmp_root=self.get_temp_dir(),
314
        extra_flags=['-resnet_version', '1', '-batch_size', '4',
315
                     '-resnet_size', '200', '--max_train_steps', '1']
316
    )
317
318

  def test_imagenet_end_to_end_synthetic_v2_huge(self):
319
    integration.run_synthetic(
320
        main=imagenet_main.run_imagenet, tmp_root=self.get_temp_dir(),
321
        extra_flags=['-resnet_version', '2', '-batch_size', '4',
322
                     '-resnet_size', '200', '--max_train_steps', '1']
323
324
    )

325

326
327
if __name__ == '__main__':
  tf.test.main()