parsers.py 13.6 KB
Newer Older
Taylor Robie's avatar
Taylor Robie committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
# Copyright 2017 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================

"""Collection of parsers which are shared among the official models.

The parsers in this module are intended to be used as parents to all arg
parsers in official models. For instance, one might define a new class:

class ExampleParser(argparse.ArgumentParser):
  def __init__(self):
    super(ExampleParser, self).__init__(parents=[
24
25
      arg_parsers.LocationParser(data_dir=True, model_dir=True),
      arg_parsers.DummyParser(use_synthetic_data=True),
Taylor Robie's avatar
Taylor Robie committed
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
    ])

    self.add_argument(
      "--application_specific_arg", "-asa", type=int, default=123,
      help="[default: %(default)s] This arg is application specific.",
      metavar="<ASA>"
    )

Notes about add_argument():
    Argparse will automatically template in default values in help messages if
  the "%(default)s" string appears in the message. Using the example above:

    parser = ExampleParser()
    parser.set_defaults(application_specific_arg=3141592)
    parser.parse_args(["-h"])

    When the help text is generated, it will display 3141592 to the user. (Even
  though the default was 123 when the flag was created.)


    The metavar variable determines how the flag will appear in help text. If
  not specified, the convention is to use name.upper(). Thus rather than:

Karmel Allison's avatar
Karmel Allison committed
49
    --app_specific_arg APP_SPECIFIC_ARG, -asa APP_SPECIFIC_ARG
Taylor Robie's avatar
Taylor Robie committed
50
51
52

  if metavar="<ASA>" is set, the user sees:

Karmel Allison's avatar
Karmel Allison committed
53
    --app_specific_arg <ASA>, -asa <ASA>
Taylor Robie's avatar
Taylor Robie committed
54
55
56

"""

57
58
59
60
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

Taylor Robie's avatar
Taylor Robie committed
61
62
import argparse

63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
import tensorflow as tf


# Map string to (TensorFlow dtype, default loss scale)
DTYPE_MAP = {
    "fp16": (tf.float16, 128),
    "fp32": (tf.float32, 1),
}


def parse_dtype_info(flags):
  """Convert dtype string to tf dtype, and set loss_scale default as needed.

  Args:
    flags: namespace object returned by arg parser.

  Raises:
    ValueError: If an invalid dtype is provided.
  """
  if flags.dtype in (i[0] for i in DTYPE_MAP.values()):
    return  # Make function idempotent

  try:
    flags.dtype, default_loss_scale = DTYPE_MAP[flags.dtype]
  except KeyError:
    raise ValueError("Invalid dtype: {}".format(flags.dtype))

  flags.loss_scale = flags.loss_scale or default_loss_scale

Taylor Robie's avatar
Taylor Robie committed
92
93
94
95
96
97
98
99
100

class BaseParser(argparse.ArgumentParser):
  """Parser to contain flags which will be nearly universal across models.

  Args:
    add_help: Create the "--help" flag. False if class instance is a parent.
    data_dir: Create a flag for specifying the input data directory.
    model_dir: Create a flag for specifying the model file directory.
    train_epochs: Create a flag to specify the number of training epochs.
101
    epochs_between_evals: Create a flag to specify the frequency of testing.
102
103
    stop_threshold: Create a flag to specify a threshold accuracy or other
      eval metric which should trigger the end of training.
Taylor Robie's avatar
Taylor Robie committed
104
105
    batch_size: Create a flag to specify the batch size.
    multi_gpu: Create a flag to allow the use of all available GPUs.
106
    hooks: Create a flag to specify hooks for logging.
Taylor Robie's avatar
Taylor Robie committed
107
108
109
  """

  def __init__(self, add_help=False, data_dir=True, model_dir=True,
110
111
112
               train_epochs=True, epochs_between_evals=True,
               stop_threshold=True, batch_size=True, multi_gpu=True,
               hooks=True):
Taylor Robie's avatar
Taylor Robie committed
113
114
115
116
117
118
119
120
121
122
123
124
    super(BaseParser, self).__init__(add_help=add_help)

    if data_dir:
      self.add_argument(
          "--data_dir", "-dd", default="/tmp",
          help="[default: %(default)s] The location of the input data.",
          metavar="<DD>",
      )

    if model_dir:
      self.add_argument(
          "--model_dir", "-md", default="/tmp",
125
126
          help="[default: %(default)s] The location of the model checkpoint "
               "files.",
Taylor Robie's avatar
Taylor Robie committed
127
128
129
130
131
132
133
134
135
136
          metavar="<MD>",
      )

    if train_epochs:
      self.add_argument(
          "--train_epochs", "-te", type=int, default=1,
          help="[default: %(default)s] The number of epochs used to train.",
          metavar="<TE>"
      )

137
    if epochs_between_evals:
Taylor Robie's avatar
Taylor Robie committed
138
      self.add_argument(
139
          "--epochs_between_evals", "-ebe", type=int, default=1,
Taylor Robie's avatar
Taylor Robie committed
140
141
          help="[default: %(default)s] The number of training epochs to run "
               "between evaluations.",
142
          metavar="<EBE>"
Taylor Robie's avatar
Taylor Robie committed
143
144
      )

145
146
147
148
149
150
151
152
153
    if stop_threshold:
      self.add_argument(
          "--stop_threshold", "-st", type=float, default=None,
          help="[default: %(default)s] If passed, training will stop at "
          "the earlier of train_epochs and when the evaluation metric is "
          "greater than or equal to stop_threshold.",
          metavar="<ST>"
      )

Taylor Robie's avatar
Taylor Robie committed
154
155
156
157
158
159
160
161
162
163
164
165
166
    if batch_size:
      self.add_argument(
          "--batch_size", "-bs", type=int, default=32,
          help="[default: %(default)s] Batch size for training and evaluation.",
          metavar="<BS>"
      )

    if multi_gpu:
      self.add_argument(
          "--multi_gpu", action="store_true",
          help="If set, run across all available GPUs."
      )

167
168
169
170
171
172
173
    if hooks:
      self.add_argument(
          "--hooks", "-hk", nargs="+", default=["LoggingTensorHook"],
          help="[default: %(default)s] A list of strings to specify the names "
               "of train hooks. "
               "Example: --hooks LoggingTensorHook ExamplesPerSecondHook. "
               "Allowed hook names (case-insensitive): LoggingTensorHook, "
174
               "ProfilerHook, ExamplesPerSecondHook, LoggingMetricHook."
175
               "See official.utils.logs.hooks_helper for details.",
176
177
178
          metavar="<HK>"
      )

Taylor Robie's avatar
Taylor Robie committed
179
180
181
182
183
184
185
186
187
188
189
190

class PerformanceParser(argparse.ArgumentParser):
  """Default parser for specifying performance tuning arguments.

  Args:
    add_help: Create the "--help" flag. False if class instance is a parent.
    num_parallel_calls: Create a flag to specify parallelism of data loading.
    inter_op: Create a flag to allow specification of inter op threads.
    intra_op: Create a flag to allow specification of intra op threads.
  """

  def __init__(self, add_help=False, num_parallel_calls=True, inter_op=True,
191
192
               intra_op=True, use_synthetic_data=True, max_train_steps=True,
               dtype=True):
Taylor Robie's avatar
Taylor Robie committed
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
    super(PerformanceParser, self).__init__(add_help=add_help)

    if num_parallel_calls:
      self.add_argument(
          "--num_parallel_calls", "-npc",
          type=int, default=5,
          help="[default: %(default)s] The number of records that are "
               "processed in parallel  during input processing. This can be "
               "optimized per data set but for generally homogeneous data "
               "sets, should be approximately the number of available CPU "
               "cores.",
          metavar="<NPC>"
      )

    if inter_op:
      self.add_argument(
          "--inter_op_parallelism_threads", "-inter",
          type=int, default=0,
          help="[default: %(default)s Number of inter_op_parallelism_threads "
               "to use for CPU. See TensorFlow config.proto for details.",
          metavar="<INTER>"
      )

    if intra_op:
      self.add_argument(
          "--intra_op_parallelism_threads", "-intra",
          type=int, default=0,
          help="[default: %(default)s Number of intra_op_parallelism_threads "
               "to use for CPU. See TensorFlow config.proto for details.",
          metavar="<INTRA>"
      )

    if use_synthetic_data:
      self.add_argument(
          "--use_synthetic_data", "-synth",
          action="store_true",
          help="If set, use fake data (zeroes) instead of a real dataset. "
               "This mode is useful for performance debugging, as it removes "
               "input processing steps, but will not learn anything."
      )

234
235
236
237
238
239
240
241
242
243
244
    if max_train_steps:
      self.add_argument(
          "--max_train_steps", "-mts", type=int, default=None,
          help="[default: %(default)s] The model will stop training if the "
               "global_step reaches this value. If not set, training will run"
               "until the specified number of epochs have run as usual. It is"
               "generally recommended to set --train_epochs=1 when using this"
               "flag.",
          metavar="<MTS>"
      )

245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
    if dtype:
      self.add_argument(
          "--dtype", "-dt",
          default="fp32",
          choices=list(DTYPE_MAP.keys()),
          help="[default: %(default)s] {%(choices)s} The TensorFlow datatype "
               "used for calculations. Variables may be cast to a higher"
               "precision on a case-by-case basis for numerical stability.",
          metavar="<DT>"
      )

      self.add_argument(
          "--loss_scale", "-ls",
          type=int,
          help="[default: %(default)s] The amount to scale the loss by when "
               "the model is run. Before gradients are computed, the loss is "
               "multiplied by the loss scale, making all gradients loss_scale "
               "times larger. To adjust for this, gradients are divided by the "
               "loss scale before being applied to variables. This is "
               "mathematically equivalent to training without a loss scale, "
               "but the loss scale helps avoid some intermediate gradients "
               "from underflowing to zero. If not provided the default for "
               "fp16 is 128 and 1 for all other dtypes.",
      )

Taylor Robie's avatar
Taylor Robie committed
270
271
272
273
274
275
276
277
278
279
280
281
282
283

class ImageModelParser(argparse.ArgumentParser):
  """Default parser for specification image specific behavior.

  Args:
    add_help: Create the "--help" flag. False if class instance is a parent.
    data_format: Create a flag to specify image axis convention.
  """

  def __init__(self, add_help=False, data_format=True):
    super(ImageModelParser, self).__init__(add_help=add_help)
    if data_format:
      self.add_argument(
          "--data_format", "-df",
284
          default=None,
Karmel Allison's avatar
Karmel Allison committed
285
          choices=["channels_first", "channels_last"],
Taylor Robie's avatar
Taylor Robie committed
286
287
288
289
290
          help="A flag to override the data format used in the model. "
               "channels_first provides a performance boost on GPU but is not "
               "always compatible with CPU. If left unspecified, the data "
               "format will be chosen automatically based on whether TensorFlow"
               "was built for CPU or GPU.",
291
          metavar="<CF>"
Taylor Robie's avatar
Taylor Robie committed
292
      )
293
294


295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
class ExportParser(argparse.ArgumentParser):
  """Parsing options for exporting saved models or other graph defs.

  This is a separate parser for now, but should be made part of BaseParser
  once all models are brought up to speed.

  Args:
    add_help: Create the "--help" flag. False if class instance is a parent.
    export_dir: Create a flag to specify where a SavedModel should be exported.
  """

  def __init__(self, add_help=False, export_dir=True):
    super(ExportParser, self).__init__(add_help=add_help)
    if export_dir:
      self.add_argument(
          "--export_dir", "-ed",
          help="[default: %(default)s] If set, a SavedModel serialization of "
               "the model will be exported to this directory at the end of "
               "training. See the README for more details and relevant links.",
          metavar="<ED>"
      )


318
319
320
321
322
323
324
325
class BenchmarkParser(argparse.ArgumentParser):
  """Default parser for benchmark logging.

  Args:
    add_help: Create the "--help" flag. False if class instance is a parent.
    benchmark_log_dir: Create a flag to specify location for benchmark logging.
  """

326
327
  def __init__(self, add_help=False, benchmark_log_dir=True,
               bigquery_uploader=True):
328
329
330
331
332
333
334
    super(BenchmarkParser, self).__init__(add_help=add_help)
    if benchmark_log_dir:
      self.add_argument(
          "--benchmark_log_dir", "-bld", default=None,
          help="[default: %(default)s] The location of the benchmark logging.",
          metavar="<BLD>"
      )
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
    if bigquery_uploader:
      self.add_argument(
          "--gcp_project", "-gp", default=None,
          help="[default: %(default)s] The GCP project name where the benchmark"
               " will be uploaded.",
          metavar="<GP>"
      )
      self.add_argument(
          "--bigquery_data_set", "-bds", default="test_benchmark",
          help="[default: %(default)s] The Bigquery dataset name where the"
               " benchmark will be uploaded.",
          metavar="<BDS>"
      )
      self.add_argument(
          "--bigquery_run_table", "-brt", default="benchmark_run",
          help="[default: %(default)s] The Bigquery table name where the"
               " benchmark run information will be uploaded.",
          metavar="<BRT>"
      )
      self.add_argument(
          "--bigquery_metric_table", "-bmt", default="benchmark_metric",
          help="[default: %(default)s] The Bigquery table name where the"
               " benchmark metric information will be uploaded.",
          metavar="<BMT>"
      )
360
361
362
363
364
365
366
367
368
369
370
371


class EagerParser(BaseParser):
  """Remove options not relevant for Eager from the BaseParser."""

  def __init__(self, add_help=False, data_dir=True, model_dir=True,
               train_epochs=True, batch_size=True):
    super(EagerParser, self).__init__(
        add_help=add_help, data_dir=data_dir, model_dir=model_dir,
        train_epochs=train_epochs, epochs_between_evals=False,
        stop_threshold=False, batch_size=batch_size, multi_gpu=False,
        hooks=False)