mnist_tpu.py 6.58 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
# Copyright 2017 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""MNIST model training using TPUs.

This program demonstrates training of the convolutional neural network model
defined in mnist.py on Google Cloud TPUs (https://cloud.google.com/tpu/).

If you are not interested in TPUs, you should ignore this file.
"""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import tensorflow as tf
import dataset
import mnist

30
31
32
33
34
35
36
37
38
39
40
41
42
43
# Cloud TPU Cluster Resolvers
tf.flags.DEFINE_string(
    "gcp_project", default=None,
    help="Project name for the Cloud TPU-enabled project. If not specified, we "
    "will attempt to automatically detect the GCE project from metadata.")
tf.flags.DEFINE_string(
    "tpu_zone", default=None,
    help="GCE zone where the Cloud TPU is located in. If not specified, we "
    "will attempt to automatically detect the GCE project from metadata.")
tf.flags.DEFINE_string(
    "tpu_name", default=None,
    help="Name of the Cloud TPU for Cluster Resolvers. You must specify either "
    "this flag or --master.")

Neal Wu's avatar
Neal Wu committed
44
# Model specific parameters
45
46
47
48
49
tf.flags.DEFINE_string(
    "master", default=None,
    help="GRPC URL of the master (e.g. grpc://ip.address.of.tpu:8470). You "
    "must specify either this flag or --tpu_name.")

50
51
52
tf.flags.DEFINE_string("data_dir", "",
                       "Path to directory containing the MNIST dataset")
tf.flags.DEFINE_string("model_dir", None, "Estimator model_dir")
Asim Shankar's avatar
Asim Shankar committed
53
tf.flags.DEFINE_integer("batch_size", 1024,
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
                        "Mini-batch size for the training. Note that this "
                        "is the global batch size and not the per-shard batch.")
tf.flags.DEFINE_integer("train_steps", 1000, "Total number of training steps.")
tf.flags.DEFINE_integer("eval_steps", 0,
                        "Total number of evaluation steps. If `0`, evaluation "
                        "after training is skipped.")
tf.flags.DEFINE_float("learning_rate", 0.05, "Learning rate.")

tf.flags.DEFINE_bool("use_tpu", True, "Use TPUs rather than plain CPUs")
tf.flags.DEFINE_integer("iterations", 50,
                        "Number of iterations per TPU training loop.")
tf.flags.DEFINE_integer("num_shards", 8, "Number of shards (TPU chips).")

FLAGS = tf.flags.FLAGS


def metric_fn(labels, logits):
  accuracy = tf.metrics.accuracy(
72
      labels=labels, predictions=tf.argmax(logits, axis=1))
73
74
75
76
77
78
79
80
81
82
83
84
85
  return {"accuracy": accuracy}


def model_fn(features, labels, mode, params):
  del params
  if mode == tf.estimator.ModeKeys.PREDICT:
    raise RuntimeError("mode {} is not supported yet".format(mode))
  image = features
  if isinstance(image, dict):
    image = features["image"]

  model = mnist.Model("channels_last")
  logits = model(image, training=(mode == tf.estimator.ModeKeys.TRAIN))
86
  loss = tf.losses.sparse_softmax_cross_entropy(labels=labels, logits=logits)
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132

  if mode == tf.estimator.ModeKeys.TRAIN:
    learning_rate = tf.train.exponential_decay(
        FLAGS.learning_rate,
        tf.train.get_global_step(),
        decay_steps=100000,
        decay_rate=0.96)
    optimizer = tf.train.GradientDescentOptimizer(learning_rate=learning_rate)
    if FLAGS.use_tpu:
      optimizer = tf.contrib.tpu.CrossShardOptimizer(optimizer)
    return tf.contrib.tpu.TPUEstimatorSpec(
        mode=mode,
        loss=loss,
        train_op=optimizer.minimize(loss, tf.train.get_global_step()))

  if mode == tf.estimator.ModeKeys.EVAL:
    return tf.contrib.tpu.TPUEstimatorSpec(
        mode=mode, loss=loss, eval_metrics=(metric_fn, [labels, logits]))


def train_input_fn(params):
  batch_size = params["batch_size"]
  data_dir = params["data_dir"]
  # Retrieves the batch size for the current shard. The # of shards is
  # computed according to the input pipeline deployment. See
  # `tf.contrib.tpu.RunConfig` for details.
  ds = dataset.train(data_dir).cache().repeat().shuffle(
      buffer_size=50000).apply(
          tf.contrib.data.batch_and_drop_remainder(batch_size))
  images, labels = ds.make_one_shot_iterator().get_next()
  return images, labels


def eval_input_fn(params):
  batch_size = params["batch_size"]
  data_dir = params["data_dir"]
  ds = dataset.test(data_dir).apply(
      tf.contrib.data.batch_and_drop_remainder(batch_size))
  images, labels = ds.make_one_shot_iterator().get_next()
  return images, labels


def main(argv):
  del argv  # Unused.
  tf.logging.set_verbosity(tf.logging.INFO)

133
134
135
136
137
138
139
140
141
142
  if FLAGS.master is None and FLAGS.tpu_name is None:
    raise RuntimeError("You must specify either --master or --tpu_name.")

  if FLAGS.master is not None:
    if FLAGS.tpu_name is not None:
      tf.logging.warn("Both --master and --tpu_name are set. Ignoring "
                      "--tpu_name and using --master.")
    tpu_grpc_url = FLAGS.master
  else:
    tpu_cluster_resolver = (
143
        tf.contrib.cluster_resolver.TPUClusterResolver(
144
145
146
147
            tpu_names=[FLAGS.tpu_name],
            zone=FLAGS.tpu_zone,
            project=FLAGS.gcp_project))
    tpu_grpc_url = tpu_cluster_resolver.get_master()
Neal Wu's avatar
Neal Wu committed
148

149
  run_config = tf.contrib.tpu.RunConfig(
150
151
      master=tpu_grpc_url,
      evaluation_master=tpu_grpc_url,
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
      model_dir=FLAGS.model_dir,
      session_config=tf.ConfigProto(
          allow_soft_placement=True, log_device_placement=True),
      tpu_config=tf.contrib.tpu.TPUConfig(FLAGS.iterations, FLAGS.num_shards),
  )

  estimator = tf.contrib.tpu.TPUEstimator(
      model_fn=model_fn,
      use_tpu=FLAGS.use_tpu,
      train_batch_size=FLAGS.batch_size,
      eval_batch_size=FLAGS.batch_size,
      params={"data_dir": FLAGS.data_dir},
      config=run_config)
  # TPUEstimator.train *requires* a max_steps argument.
  estimator.train(input_fn=train_input_fn, max_steps=FLAGS.train_steps)
  # TPUEstimator.evaluate *requires* a steps argument.
  # Note that the number of examples used during evaluation is
  # --eval_steps * --batch_size.
  # So if you change --batch_size then change --eval_steps too.
Asim Shankar's avatar
Asim Shankar committed
171
172
  if FLAGS.eval_steps:
    estimator.evaluate(input_fn=eval_input_fn, steps=FLAGS.eval_steps)
173
174
175
176


if __name__ == "__main__":
  tf.app.run()